

Robotik I: Einführung in die Robotik **Bewegungsplanung**

Tamim Asfour

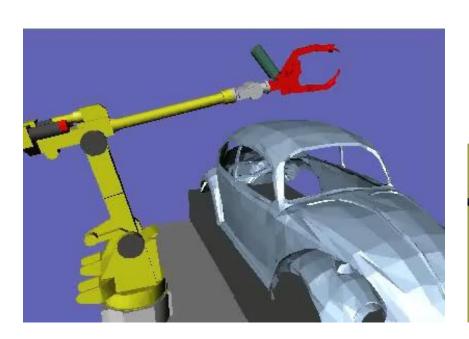
KIT-Fakultät für Informatik, Institut für Anthropomatik und Robotik (IAR) Hochperformante Humanoide Technologien (H²T)

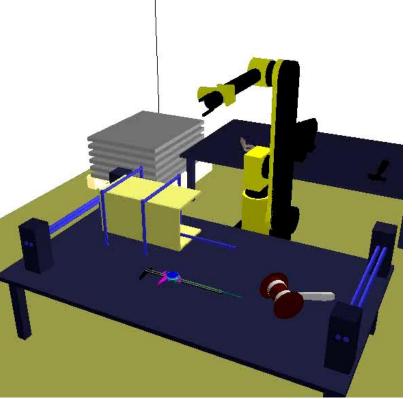
Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren

Bewegungsplanung: Motivation

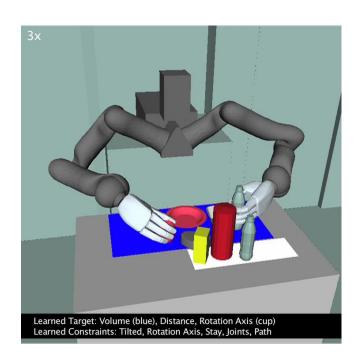
Erzeugen einer kollisionsfreien Trajektorie unter Berücksichtigung verschiedener Ziele und Einschränkungen





Bewegungsplanung: Motivation

Erzeugen einer kollisionsfreien Trajektorie unter Berücksichtigung verschiedener Ziele und Einschränkungen



Inhalt

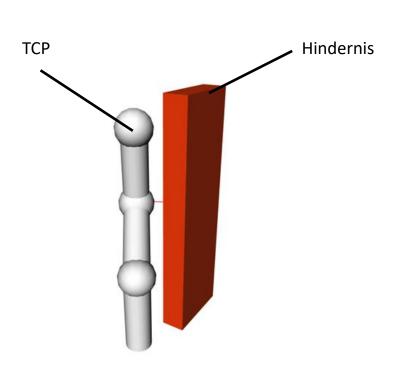
- Motivation
- Grundlagen der Bewegungsplanung
 - Problemstellung
 - Definitionen
 - Begriffsbildung
 - Problemklassen
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren

Grundlagen der Bewegungsplanung: Problemstellung

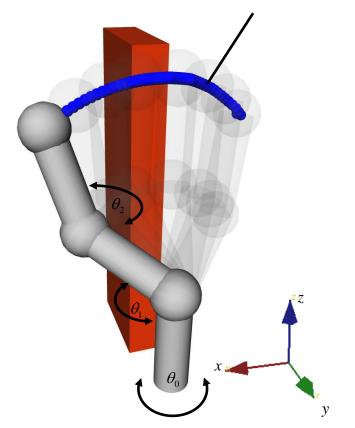
- Gegeben
 - Konfigurationsraum C
 - Startkonfiguration $q_{start} \in C$
 - lacksquare Zielkonfiguration $oldsymbol{q}_{ziel} \in \mathcal{C}$
- Gesucht
 - Stetige Trajektorie τ : $[0,1] \rightarrow C$ mit
 - $au(0) = q_{start}$
 - $\tau(1) = q_{ziel}$
 - Unter Berücksichtigung von
 - Gütekriterien
 - Neben- und Randbedingungen
 - Zwangsbedingungen

Einführung: Arbeitsraum

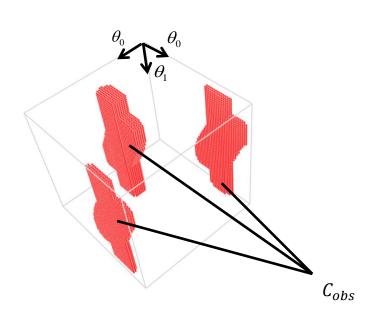
- lacksquare W: Kartesischer Raum \mathbb{R}^6
- Tool Center Point (TCP)



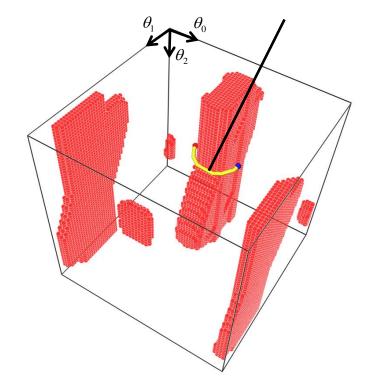
Trajektorie im Arbeitsraum



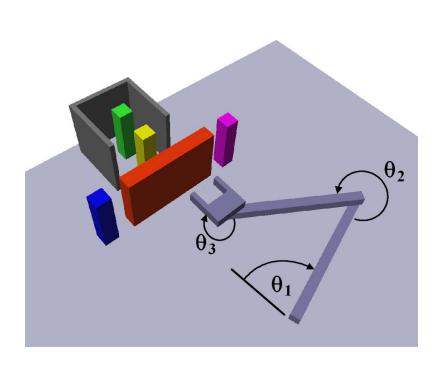
- C: n-dimensionaler Konfigurationsraum(C-Space)
- $lacktriangleq C_{free}$: Alle kollisionsfreie Konfigurationen
- lacktriangle C_{obs}: Alle Konfigurationen, die zur einer Kollision führen
- $C = C_{free} \cup C_{obs}$

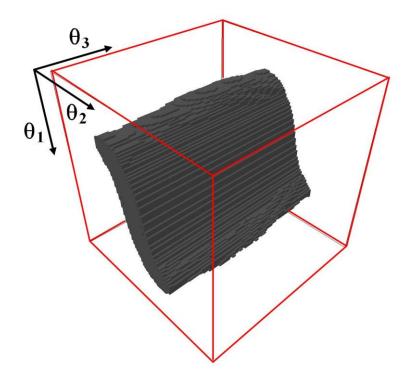


Trajektorie im C-space

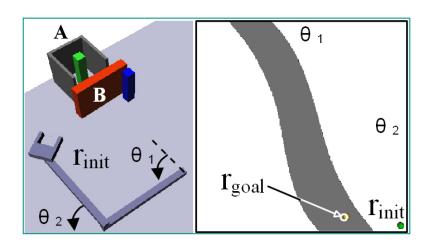


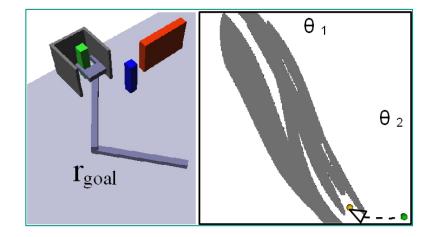
Arbeitsraum vs. Konfigurationsraum



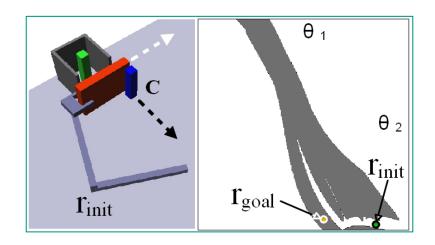


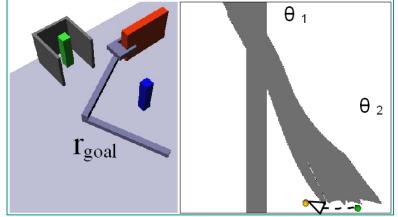
■ Wie wirken sich Änderungen im Arbeitsraum auf den C-Raum?



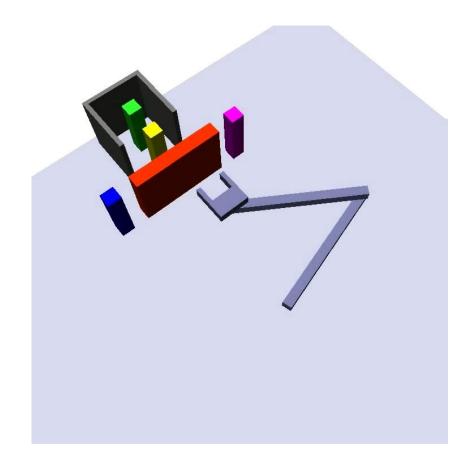


■ Wie wirken sich Änderungen im Arbeitsraum auf den C-Raum?





 $lacktriangleright C_{free}$ und C_{obs} ändern sich während der Ausführung



Grundlagen der Bewegungsplanung: Definitionen (1)

Konfiguration

Eine **Konfiguration** $q \in C$ beschreibt den Zustand eines Roboters

- als Lage und Orientierung im euklidischen Raum oder
- als Gelenkwinkelvektor im Gelenkwinkelraum.

Konfigurationsraum

Der Konfigurationsraum \mathcal{C} eines Roboters R ist der Raum aller möglicher Konfigurationen von R.

Grundlagen der Bewegungsplanung: Definitionen (2)

Arbeitsraumhindernis

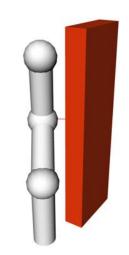
Ein **Arbeitsraumhindernis** *H* ist der Raum, welcher von einem Objekt im Arbeitsraum eingenommen wird.

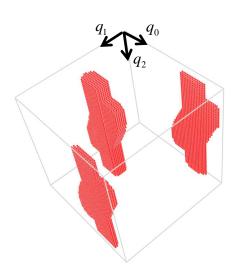
Ein Konfigurationsraumhindernis C_H ist die Menge aller Punkte des Konfigurationsraumes C, welche zu einer Kollision mit dem Hindernis H führen.

Hindernisraum

Der **Hindernisraum** C_{obs} ist die Menge aller Konfigurationsraumhindernisse

$$C_{obs} = \bigcup_{i} C_{H_i}$$





Grundlagen der Bewegungsplanung: Definitionen (3)

Freiraum

Der **Freiraum** ist die Menge aller Punkte aus C, welche nicht im Hindernisraum C_{obs} liegen

$$C_{free} = \{ \boldsymbol{q} \in C \mid \boldsymbol{q} \notin C_{obs} \} = C \setminus C_{obs}$$

- Aufwand für die Berechnung des Freiraums: $O(m^n)$
 - n: Anzahl der Bewegungsfreiheitsgrade des Roboters
 - m: Anzahl der Hindernisse
- Für komplexere Kinematiken kann $\mathcal{C}_{\mathsf{free}}$ nicht effizient berechnet werden
- lacktriangle Verwendung approximativer Verfahren zur vereinfachten Repräsentation von \mathcal{C}_{free}

Grundlagen der Bewegungsplanung: Definitionen (4)

Umweltmodellierung

- **Exakt**: Beispielsweise über CSG (constructed solid geometry), in Form einer algebraischen Beschreibung
- **Approximiert**: Die Umwelt wird durch Näherungen beschrieben (Boxen, verallgemeinerte Zylinder, Polyeder,....)

Grundlagen der Bewegungsplanung: Begriffsbildung (1)

Pfadplanung

- Starres Objekt (z.B. mobiler Roboter, autonomes Fahrzeug)
- \blacksquare 2D Problem (Position: x, y)
- 3D Problem (Position: x, y; Rotation: α) → Piano Mover's Problem

Bewegungsplanung

- Mehrkörpersystem (z.B. Roboterarme, Systeme mit mehreren Robotern)
- Hochdimensionale Problemstellungen

Randbedingungen, auch Zwangsbedingungen

- Globale Randbedingungen: Limitieren den gültigen Konfigurationsraum, z.B.
 - Aufrechte Position des Endeffektors, minimale Motorströme, etc.
- Lokale Randbedingungen: Schränken die Übergänge zwischen Konfigurationen ein, z.B.
 - Nicht-holonome Fahrzeuge können sich nicht seitlich bewegen oder auf der Stelle drehen
 - max. Geschwindigkeit/Beschleunigung einhalten

Grundlagen der Bewegungsplanung: Begriffsbildung (2)

Komplexität

Allgemeine Planungsaufgaben sind PSPACE-vollständig (engl. PSPACE-complete).

- Können von deterministischen Turingmaschinen mit polynomiellem Platz (Speicherplatz) entschieden werden
- Untere und obere Schranke der Komplexität NP ⊆ PSCAPE ⊆ EXPTIME, also NP-hartes Problem

Grundlagen der Bewegungsplanung: Begriffsbildung (3)

Vollständiger Algorithmus

Ein vollständiger Algorithmus findet für spezielle Planungsprobleme mindestens eine Lösung oder erkennt in endlicher Zeit, dass keine Lösung existiert.

Randomisierter Algorithmus

Randomisierte Algorithmen verwenden Zufallsgrößen, um den Ablauf zu steuern, wobei oft heuristische Annahmen genutzt werden, um die Berechnung zu beschleunigen

Auflösungsvollständiger Algorithmus

Ist ein approximativer Algorithmus für eine diskretisierte Problemstellung vollständig, wird er auflösungsvollständig genannt, (engl. resolution complete)

Grundlagen der Bewegungsplanung: Begriffsbildung IV

Probabilistisch-vollständiger Algorithmus

Ein probabilistisch-vollständiger Algorithmus (engl. probabilistically complete) findet mindestens eine Lösung falls sie existiert. D.h. die Wahrscheinlichkeit, dass eine Lösung gefunden wird, konvergiert mit fortlaufender Zeit gegen eins.

Allerdings kann mit probabilistisch-vollständigen Algorithmen nicht ermittelt werden, ob keine Lösung existiert.

Grundlagen der Bewegungsplanung: Problemklassen I

Klasse a)

Bekannt: vollständiges Umweltmodell

vollständige Neben-, Rand- und Zwangsbedingungen

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Klasse b)

Bekannt: unvollständiges Umweltmodell

unvollständige Neben-, Rand- und Zwangsbedingungen

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Kollision mit unbekannten Objekten

Grundlagen der Bewegungsplanung: Problemklassen II

Klasse c)

Bekannt: zeitvariantes Umweltmodell (bewegliche Hindernisse)

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Hindernisse in Ort und Zeit variant

Klasse d)

Bekannt: kein Umweltmodell

Gesucht: Kollisionsfreie Trajektorie vom Start- zum Zielzustand

Problem: Kartographieren

Klasse e)

Bekannt: zeitvariantes Umweltmodell

Gesucht: Trajektorie zu einem beweglichen Ziel (Rendezvous-Problem)

Problem: Zielzustand in Ort und Zeit beweglich

Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
 - Graphenbasiert
 - Potentialfelder
- Bewegungsplanung für Manipulatoren

Pfadplanung für mobile Roboter

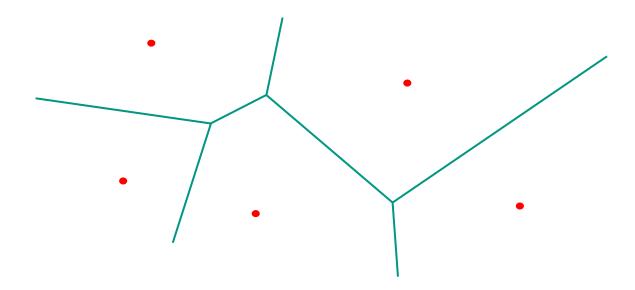
- Gegeben
 - 2D Weltmodell (z.B. Straßenkarte)
 - lacksquare Start- und Zielpositionen $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$
- lacksquare Gesucht: Günstigste Verbindung von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$
- Ansatz:
 - lacksquare Konstruiere ein Netz W von Wegen in \mathcal{C}_{free}
 - lacksquare Bilde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ auf die nächsten Knoten $oldsymbol{q'}_{start}$ und $oldsymbol{q'}_{ziel}$ in W ab
 - Suche in W einen Weg von q'_{start} nach q'_{ziel}
 - Finde einen Weg zwischen $oldsymbol{q}_{start}$ und $oldsymbol{q'}_{start}$, sowie zwischen $oldsymbol{q'}_{ziel}$ und $oldsymbol{q}_{ziel}$

Pfadplanung für mobile Roboter: 2 Problem

- 1. Konstruktion des Wegenetzes W
 - Retraktionsverfahren, z.B. Voronoi-Diagramm
 - Sichtgraphen
 - Zellzerlegung
- 2. Suche in W
 - Baumsuche
 - A*

Voronoi-Diagramme

- Visualisiert die Zerlegung eines Raumes in Regionen basierend auf vorgegebenen Punkten.
- Eine Region ist definiert als die Menge aller Punkte, deren Abstand zum Zentrum geringer ist als zu allen anderen Zentren.
- Alle Punkte auf der Grenze zwischen zwei Regionen besitzen den gleichen Abstand zum eigenen und zum benachbarten Zentrum.



Voronoi-Diagramm: Konstruktion I

Gegebene Punktmenge P

Voronoi-Diagramm: Konstruktion II

P1

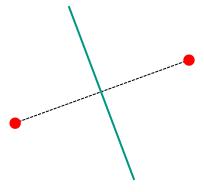
■ Teile P in zwei etwa gleich große Teilmengen P1 und P2

P2

Voronoi-Diagramm: Konstruktion III

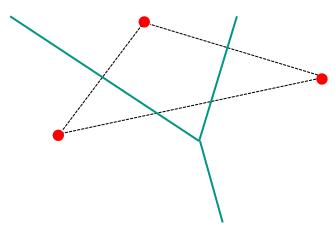
Durch rekursive Unterteilung der Punktmengen kann das Problem der Erstellung eines Voronoi-Diagramms auf zwei einfache Fälle reduziert werden.

Fall 1: 2 Punkte



Die **Mittelsenkrechte** bildet das Voronoi-Diagramm

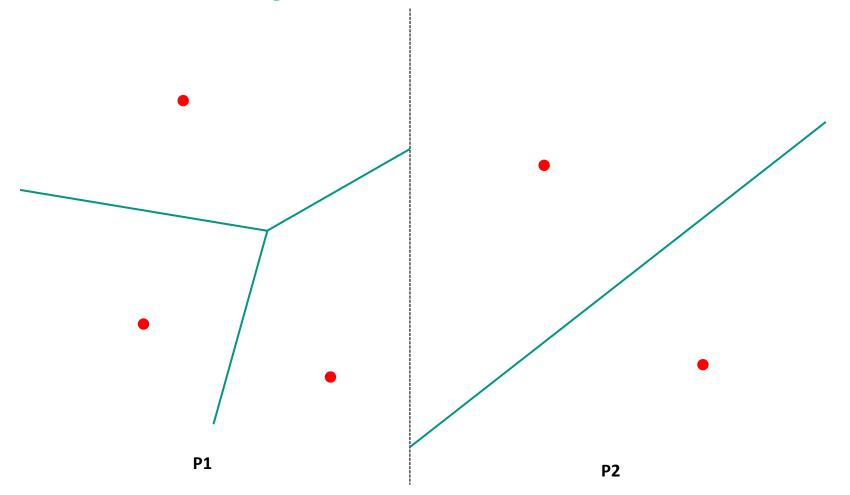
Fall 2: 3 Punkte



Die Mittelsenkrechten aller Punktpaare werden am gemeinsamen Schnittpunkt abgeschnitten

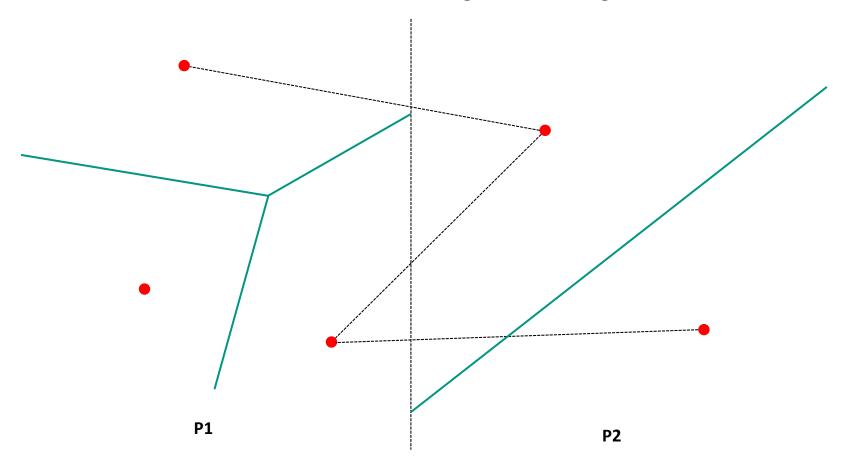
Voronoi-Diagramm: Konstruktion IV

Konstruiere Voronoi-Diagramme für P1 und P2



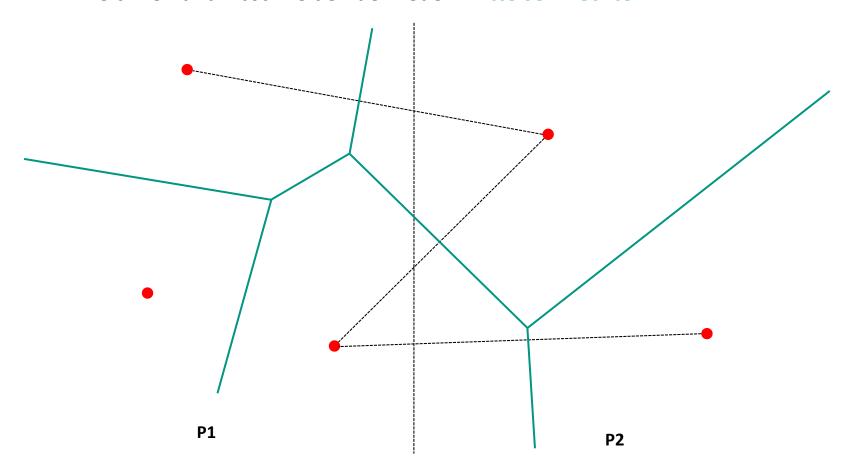
Voronoi-Diagramm: Konstruktion V

- Verschmelze die Voronoi-Diagramme für P1 und P2
 - Verbinden der nächsten Nachbarn entlang der Trennungslinie



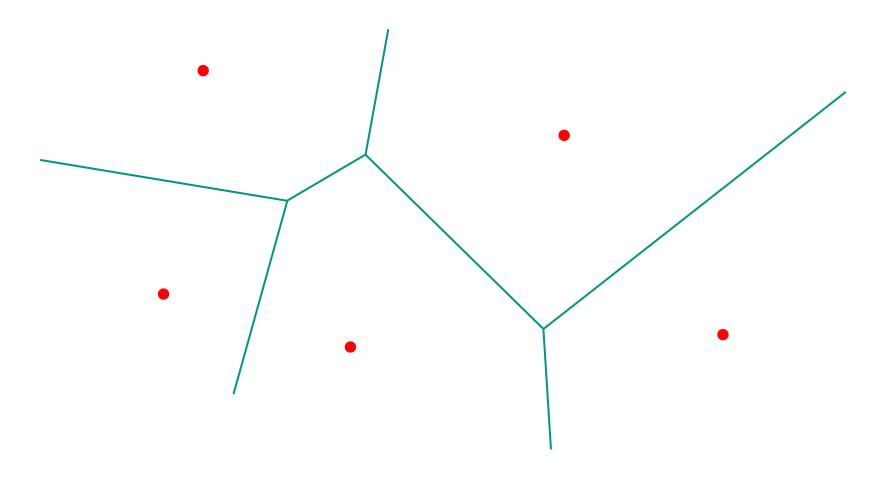
Voronoi-Diagramm: Konstruktion VI

- Verschmelze die Voronoi-Diagramme für P1 und P2
 - Einzeichnen und Abschneiden der neuen Mittelsenkrechten

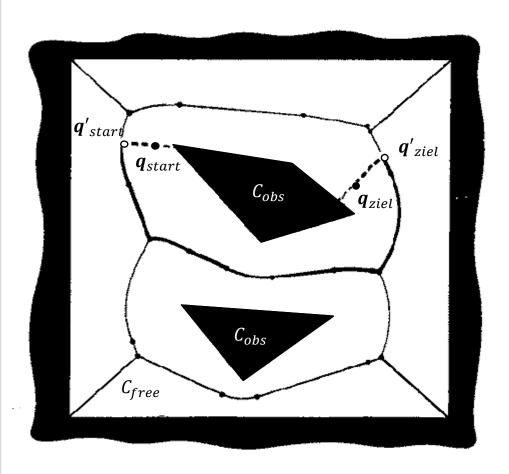


Voronoi-Diagramm: Konstruktion VII

Fertiges Voronoi-Diagramm für P



Voronoi-Diagramme: Vor- und Nachteile



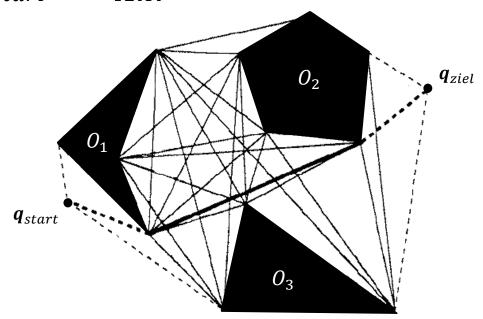
Vorteile:

- Maximaler Abstand zu Hindernissen
- Ein Roboter kann mit Hilfe von Abstandssensoren leicht prüfen, ob der richtige Weg abgefahren wird
- Nachteile
 - In der Regel ist der Weg nicht der kürzeste.
 - Bei wenigen Hindernissen werden nur wenige Wege generiert.

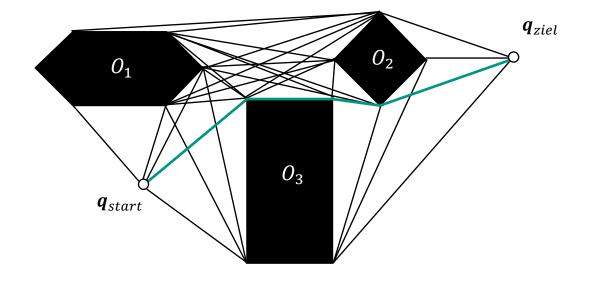
Sichtgraphen: Konstruktion

■ Verbinde jedes Paar von Eckpunkten auf dem Rand von $\mathcal{C}_{\text{free}}$ durch ein gerades Liniensegment, wenn das Segment kein Hindernis schneidet

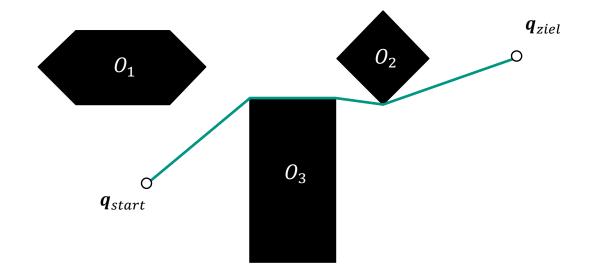
lacksquare Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ analog



Sichtgraphen: Beispiel I



Sichtgraphen: Beispiel II

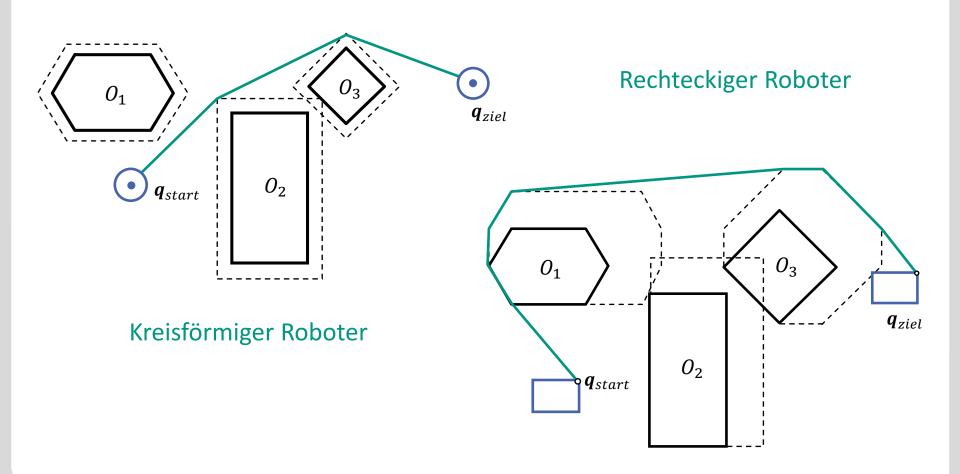


Sichtgraphen: Vor- und Nachteile

- Vorteile:
 - Wenn ein Weg gefunden ist, ist es auch der kürzeste Weg.
 - Methode ist exakt, wenn nur zwei translatorische Freiheitsgrade existieren und sowohl Roboter als auch Hindernisse durch konvexe Polygone dargestellt werden können.
- Nachteile:
 - Wege sind nicht zwingend kollisionsfrei, da Hinderniskanten auch Wegsegmente sein können.
 - Abhilfe: Erweiterung der Hindernisse.
- Methode auch im \mathbb{R}^3 anwendbar, jedoch sind die gefundenen Wege i. A. nicht die kürzesten Wege.

Sichtgraphen: Erweiterung der Hindernisse

Hindernisse werden um Roboterform erweitert



Zellzerlegung

Vorgehen:

- 1. Zerlege C_{free} in Zellen, so dass ein Weg zwischen zwei Konfigurationen innerhalb einer Zelle leicht zu finden ist
- 2. Stelle die Nachbarschaft (Adjazenz) in einem Graphen dar
- 3. Suche den optimalen Weg von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$ in dem Graphen
- Es gibt zwei Zerlegungsarten:
 - Exakte Zerlegung
 - Approximative Zerlegung

Exakte Zellzerlegung

- lacktriangle Zerlegung des Freiraumes C_{free} in Zellen Z_i , so dass:
 - Die Zellen sich nicht überlappen

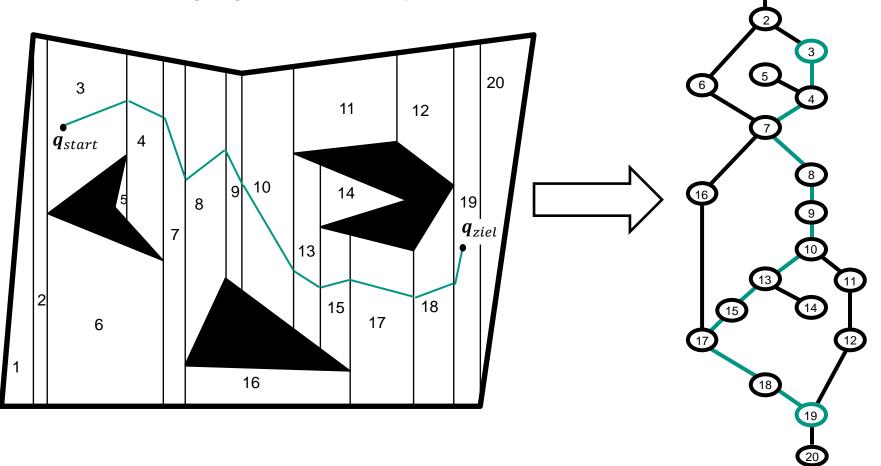
$$\forall i, k, i \neq k: Z_i \cap Z_k = \emptyset$$

lacktriangle Die Vereinigungsmenge aller Z_i ist \mathcal{C}_{free}

$$\bigcup_{i=1}^{n} Z_i = C_{free}$$

Exakte Zellzerlegung: Beispiel

Exakte Zellzerlegung mit Line-Sweep



Approximative Zellzerlegung

Vorgehen:

- 1. Zerlege den Freiraum C_{free} in Zellen von vordefinierter Form (z.B. rechteckig)
- 2. Wenn eine Zelle nicht vollständig in C_{free} liegt, verringere die Größe und zerlege die Zelle weiter (z.B. Quadtree)
- 3. Wende diesen Schritt bis zu einer Minimalgröße der Zellen an

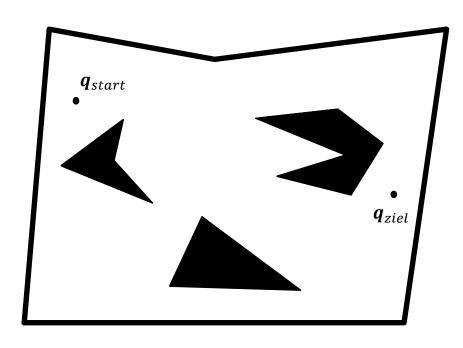
Vorteil

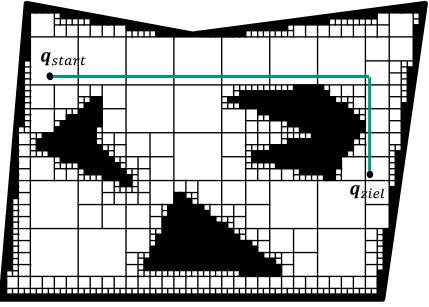
Einfache Zerlegung und damit einfachere Wegsuche

Nachteil

Der Freiraum kann i.A. nur annähernd beschrieben werden

Approximative Zellzerlegung: Beispiel





Pfadplanung für mobile Roboter: 2 Problem

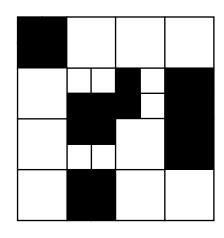
- 1. Konstruktion des Wegenetzes W
 - Retraktionsverfahren, z.B. Voronoi-Diagramm
 - Sichtgraphen
 - Zellzerlegung
- 2. Suche in W
 - Baumsuche
 - A*

Baumsuche

- Anwendungsfall:
 - Mobiler Roboter
 - 2D-Arbeits- und Konfigurationsraum
- Darstellung des Konfigurationsraums als Quadtree
 - Rekursive Unterteilung des Konfigurationsraums in Kacheln
 - Kacheln sind entweder frei oder ein Hindernis
- Bewegungsplanung:
 - Kacheln finden, in denen sich Start- bzw. Zielkonfiguration befinden
 - Benachbarte freie Kacheln des Baums vom Start zum Ziel verbinden
 - Kollisionsfreie Routenplanung durch freie Kacheln

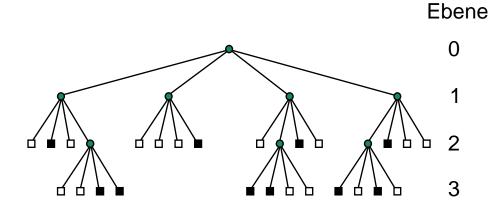
Baumsuche: Quadtree I

Darstellung des Konfigurationsraums als Quadtree



Hindernisregion

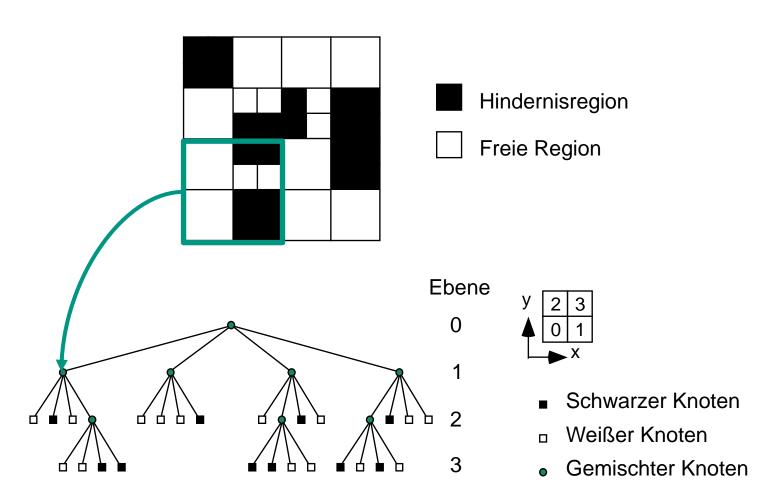
Freie Region



- Schwarzer Knoten
- Weißer Knoten
- Gemischter Knoten

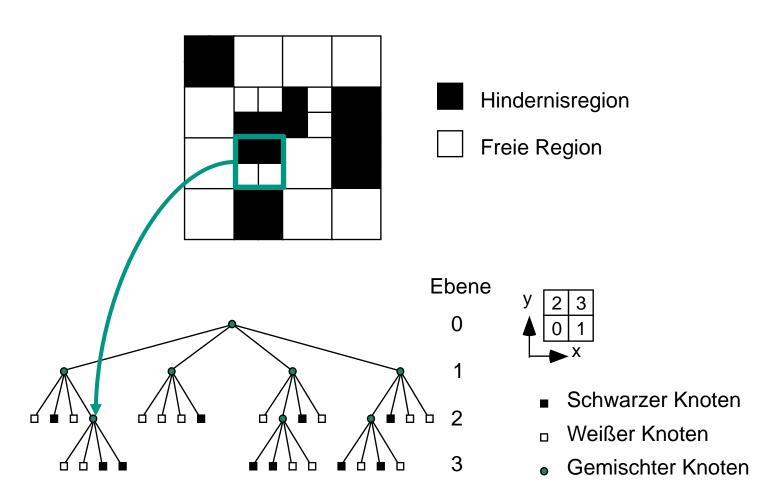
Baumsuche: Quadtree II

Beispiel: Ebene 1, Bereich 2



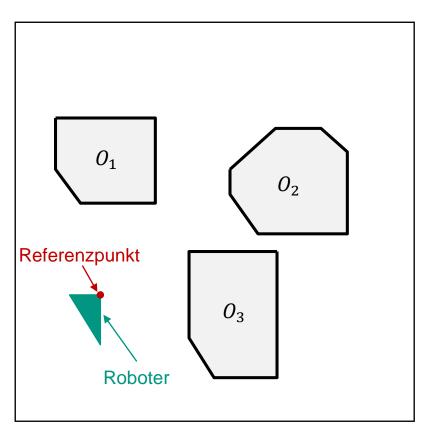
Baumsuche: Quadtree III

Beispiel Ebene 2, Bereich 1



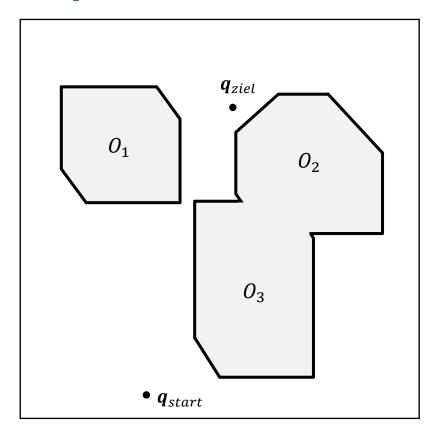
Baumsuche: Beispiel I

Arbeitsraum



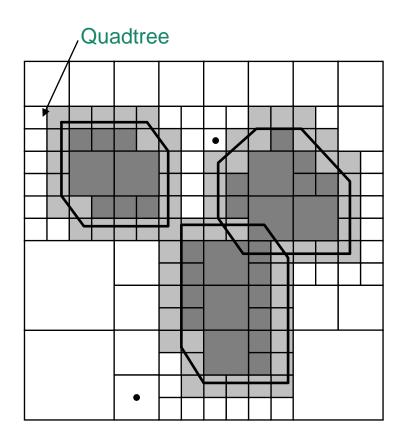
Arbeitsraum eines Roboters mit Hindernissen

Konfigurationsraum

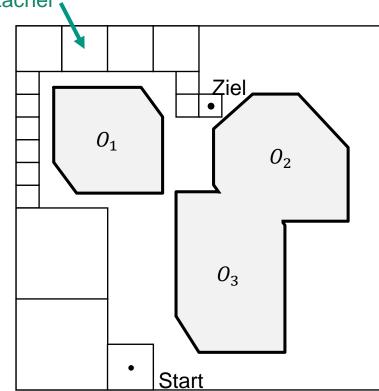


Konfigurationsraum für das vorliegende Robotersystem

Baumsuch: Beispiel II



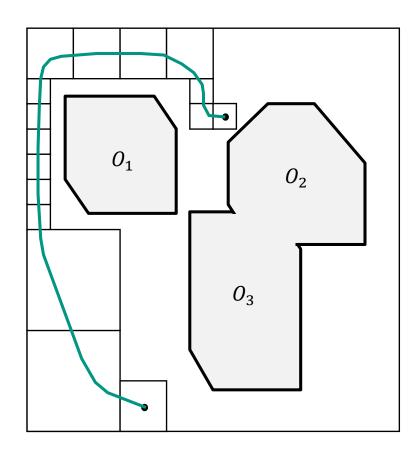
Freie Kachel



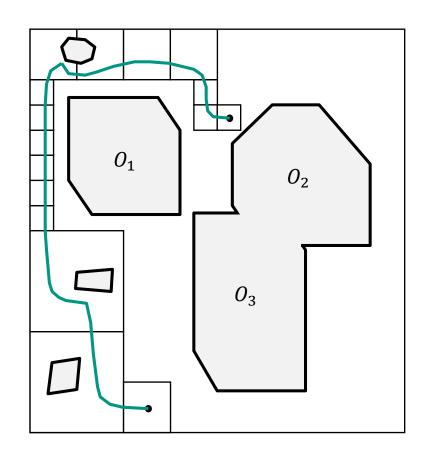
Zerlegung des Konfigurationsraums in Kachelzonen

Gesucht: Folge von freien Kacheln vom Start- zum Zielpunkt

Baumsuche: Beispiel III



Hindernisfreie Verfahrroute



Ausweichmanöver um lokale Hindernisse

Robotik I: Einführung in die Robotik Bewegungsplanung

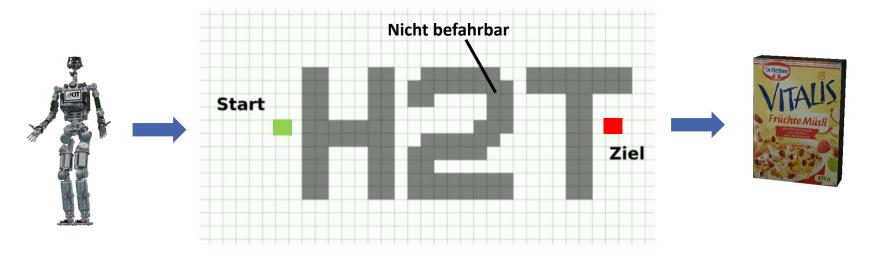
Raphael Grimm, Fabian Paus, Tamim Asfour

KIT-Fakultät für Informatik, Institut für Anthropomatik und Robotik (IAR) Hochperformante Humanoide Technologien (H²T)

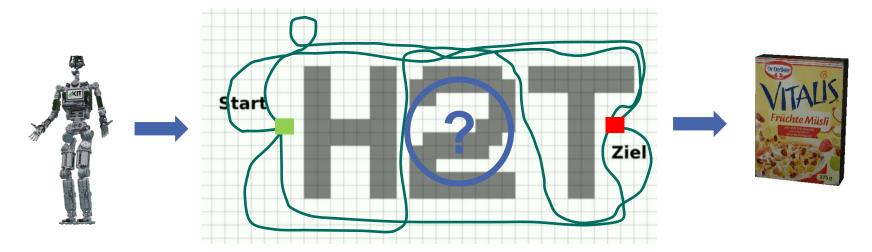
Pfadplanung für mobile Roboter: 2 Probleme

- 1. Konstruktion des Wegenetzes W
 - Retraktionsverfahren, z.B. Voronoi-Diagramm
 - Sichtgraphen
 - Zellzerlegung
- 2. Suche in W
 - Baumsuche
 - A*-Algorithmus

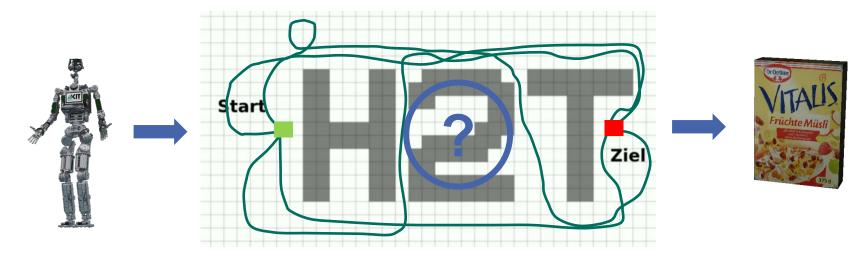
Motivation: Kürzester Pfad von Start nach Ziel



Motivation: Kürzester Pfad von Start nach Ziel



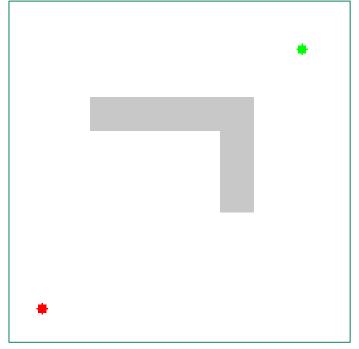
Motivation: Kürzester Pfad von Start nach Ziel



- A* ist einer der beliebtesten Algorithmen zur Routenplanung
- Kostenfunktion ist f(x) = g(x) + h(x)
 - g(x) entspricht Kosten von Start-Knoten nach Knoten x
 - h(x) entspricht **geschätzten** Kosten von Knoten x nach Ziel-Knoten

- A* ("A Stern") ist ein Algorithmus zur Bestensuche
- Findet den optimalen Pfad von einem Startknoten v_{start} zu einem Zielknoten v_{ziel}

Optimalität in Bezug auf die Pfadkosten (z.B. kürzester Weg, kürzeste Zeit, kleinste Kantengewichte, usw.)



https://de.wikipedia.org/wiki/A*-Algorithmus

- Iterativer Ansatz
- Es werden zwei Knotenlisten verwaltet
 - Open Set *O*: Noch zu besuchende Knoten
 - Closed Set C: Bereits besuchte Knoten
- **Update**: Für einen besuchten Knoten v_n :
 - **Vorgängerknoten** $pred(v_n)$
 - **Akkumulierte Kosten**, um v_n zu erreichen: $g(v_n)$
 - **Heuristik** für die erwarteten Kosten zum Ziel: $h(v_n)$
- Initialisierung

 - $C = \{\}$
 - $g(v_i) = \infty, \ 1 \le i \le K$
 - $g(v_s) = 0$

Algorithmus

Solange $O \neq \emptyset$

- Bestimme den zu erweiternden Knoten
 - Finde $v_i \in O$ mit minimalem $f(v_i) = g(v_i) + h(v_i)$
- Wenn $v_i = v_{ziel}$ **Lösung gefunden**: Traversiere Vorgänger von v_i bis v_{start} erreicht ist.
- \bullet 0.remove(v_i)
- lacksquare C. add (v_i)
- **Update** für alle Nachfolger v_i von v_i durchführen
 - Wenn $v_i \in C$, dann überspringe v_i
 - Wenn $v_j \notin O$, dann O. $add(v_j)$
 - Wenn $g(v_i) + cost(v_i, v_j) < g(v_j)$
 - $g(v_i) = g(v_i) + cost(v_i, v_i)$
 - $h(v_j) = heuristic(v_j, v_{ziel})$
 - $pred(v_i) = v_i$

A*-Algorithmus: Beispiel

- Gitter mit 15 Knoten
- lacksquare Finde den optimalen Pfad von v_2 nach v_{13}
 - Nur horizontale und vertikale Bewegungen erlaubt
 - Kosten:
 - Betreten einer grauen Zelle: 1
 - Betreten einer gelben Zelle 4
 - Heuristik h: Euklidische Distanz zu v_{13} (z.B. $h(v_{11}) = \sqrt{2}$)

Start			
v_1	v_2	v_3	
v_4	v_5	v_6	
v_7	v_8	v_9	
v_{10}	v_{11}	v_{12}	
v_{13}	v_{14}	v_{15}	

A*-Algorithmus: Beispiel

Initialisierung:

$$0 = \{ V_2 \}$$

$$(= \{ \}$$

$$f(V_2) = 0 + h(V_2)$$

$$= 0 + \sqrt{4^2 + 1^2} = 17$$

v_1	v_2	v_3
v_4	v_5	v_6
v_7	y8 4	v_9
v_{10}	v_{11}	v_{12}
v ₁₃	V ₁₄	v_{15}

A*-Algorithmus: Beispiel, Initialisierung

Initialisierung:

$$0 = \{v_2\}$$

$$f(v_2) = 0 + h(v_2) = \sqrt{4^2 + 1^2} \approx 4.12$$

v_1	v_2	v_3
v_4	v_5	v_6
v_7	v_8	v_9
v_{10}	v_{11}	v_{12}
v_{13}	v_{14}	<i>v</i> ₁₅

Zustand:

$$\min_{\mathbf{v}} \left(\int (\mathbf{v}) \right)$$

$$f(v_2) = 0 + h(v_2) = \sqrt{4^2 + 1^2} \approx 4.12$$

Update:

Expandial
$$V_2$$

 $0 = \{ V_1, V_3, V_5 \}$
 $C = \{ V_2 \}$
 $f(V_1) = 1 + Y = 5$
 $f(V_3) = 1 + (Y_1^2 + 2^2) = 1 + \sqrt{201}$
 $f(V_5) = 4 + (3^2 + 12^2) = 4 + \sqrt{1001}$

$v_1 \stackrel{\checkmark}{\leftarrow}$	-v2 1	$\rightarrow v_3$
v_4	V ₅	v_6
v_7^{\prime}	v_8	v_{q}
v_{1_0}	v_{11}	v_{12}
v ₁₃ —	-v ₁₄ -	v_{15}

Zustand:

$$0 = \{v_2\}$$

$$f(v_2) = 0 + h(v_2) = \sqrt{4^2 + 1^2} \approx 4.12$$

Update:

 \blacksquare Expandiere v_2

$$0 = \{v_1, v_3, v_5\}$$

$$f(v_1) = 1 + h(v_1) = 1 + 4 = 5$$

$$f(v_3) = 1 + h(v_3) = 1 + \sqrt{4^2 + 2^2} \approx 5.47$$

$$f(v_5) = 1 + h(v_5) = 4 + \sqrt{3^2 + 1^2} \approx 7.16$$

$$C = \{v_2\}$$

<i>v</i> ₁ ←	- v ₂ -	→ <i>v</i> ₃
v_4	v_5	v_6
v_7	v_8	v_9
v_{10}	v_{11}	v_{12}
v_{13}	v_{14}	v_{15}

Zustand:

Austand:

$$0 = \{v_1, v_3, v_5\}$$
 $f(v_1) = 5$

- $f(v_1) = 5$
- $f(v_3) \approx 5.47$
- $f(v_5) \approx 7.16$
- $C = \{v_2\}$

Update:

Expandiero
$$V_1$$

 $0 = \{v_{3_1}v_{5_1}v_{4_3} + h(v_{4}) = 3\}$
 $C = \{v_{2_1}v_{1}\}$
 $f(v_{4}) = 2 + 3 = 5$

	v_1	\Rightarrow_{v_2} -	→ <i>v</i> ₃
	v_4	v_5	v_6
7	v_7	v_8	v_9
	v_{10}	v_{11}	v_{12}
	v_{13}	v_{14}	<i>v</i> ₁₅

Zustand:

$$0 = \{v_1, v_3, v_5\}$$

$$f(v_1) = 5$$

■
$$f(v_3) \approx 5.47$$

■
$$f(v_5) \approx 7.16$$

$$C = \{v_2\}$$

Update:

Expandiere v_1

$$0 = \{v_1, v_3, v_5, v_4\}$$

$$f(v_4) = 2 + h(v_4) = 2 + 3 \neq 5$$

$$C = \{v_2, v_1\}$$

$v_1 \leftarrow$	- v ₂ -	→ v ₃
v_4	$-\infty_5$	v_{ϵ}
v_7	v_8	v_9
v_{10}	v_{11}	v_{12}
v ₁₃	v_{14}	_₽ ₁₅

A*-Algorithmus: Eigenschaften

- Findet eine optimale Lösung, wenn Heuristik h zulässig
 - Heuristik h ist zulässig, wenn sie die die minimalen Kosten, das Ziel zu erreichen, nicht überschätzt
- A* ist auch optimal effizient für jede (zulässige) Heuristik h
 - Kein optimaler Algorithmus, der die gleiche Heuristik verwendet, besucht weniger Knoten als A*
- Wenn $\forall x$: h(x) = 0: Dijkstra's Algorithmus, d.h. f = g
 - Greedy Algorithmus: beachtet die Entfernung zum Ziel nicht
 - Besucht mehr Knoten als notwendig

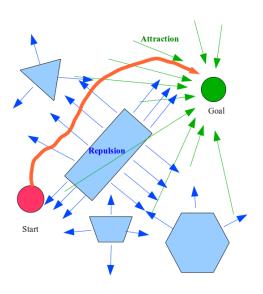
Inhalt

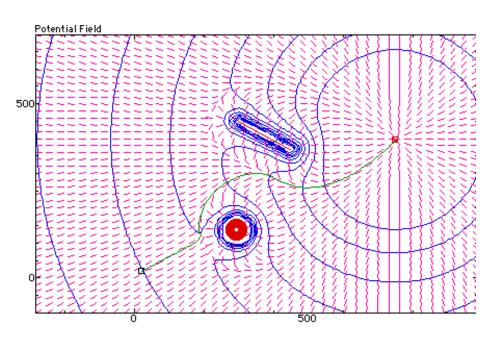
- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
 - Graphenbasiert
 - Potentialfelder
- Bewegungsplanung für Manipulatoren

Potentialfeld-Methode

Methode entwickelt für

- Bewegungsplanung [Kathib 1986]
- SLAM bei mobilen Roboter, d.h. [Prestes 2002]





O. Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots", International Journal on Robotics Research (IJRR), 5(1):90--98, Spring, 1986

Potentialfelder (1)

- Der Roboter bewegt sich unter dem Einfluss von Kräften, welche ein Potentialfeld auf ihn ausübt
- Definition:
 - Ein Potentialfeld *U* ist eine Skalarfunktion über dem Freiraum

$$U: C_{free} \to \mathbb{R}$$

lacktriangle Die Kraft in einem Punkt $m{q}$ des Potentialfeldes ist der negative Gradient in diesem Punkt

$$F(\boldsymbol{q}) = -\nabla U(\boldsymbol{q})$$

Potentialfelder (2)

Abstoßendes Potenzial

- Hindernisse erzeugen ein abstoßendes Potential
- In großem Abstand zu Hindernissen ($> \rho_0$) soll der Roboter nicht beeinflusst werden
- Beispiel:

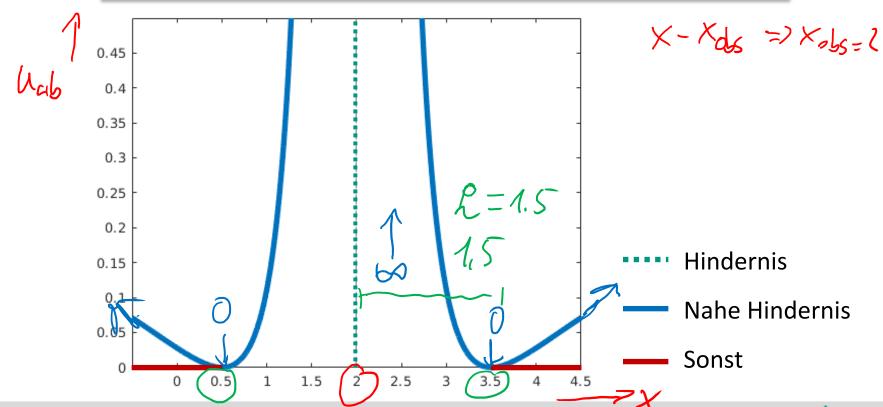
$$U_{ab}(\boldsymbol{q}) = \begin{cases} \frac{1}{2} \nu \left(\frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})} - \frac{1}{\rho_0} \right)^2 & \text{für } \rho(\boldsymbol{q}, \boldsymbol{q}_{obs}) \leq \rho_0 \\ 0 & \text{sonst} \end{cases}$$

 $\rho(\mathbf{q}, \mathbf{q}_{obs}) = \|\mathbf{q} - \mathbf{q}_{obs}\|$ ist die minimale Distanz zwischen Roboter und Hindernis

$$F_{ab} = -\nabla U_{ab} = \nu \left(\frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})} - \frac{1}{\rho_0} \right) \cdot \frac{1}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})^2} \cdot \frac{\boldsymbol{q} - \boldsymbol{q}_{obs}}{\rho(\boldsymbol{q}, \boldsymbol{q}_{obs})}$$

Potentialfeld: Hindernis-Beispiel

$$U_{ab}(x) = \begin{cases} \left(\frac{1}{\|x - 2\|} - \frac{1}{1.5} \right)^{2} \right) f \ddot{u}r \|x - 2\| \le 1.5 \\ 0 \qquad sonst \end{cases}$$



Potentialfelder (3)

- Anziehendes Potential
 - lacktriangle Es soll möglichst nur ein Minimum in $oldsymbol{q}_{ziel}$ geben
- Lineare Funktion der Distanz zum Ziel:

$$U_{an}(\boldsymbol{q}) = k \cdot \|\boldsymbol{q} - \boldsymbol{q}_{ziel}\|$$

$$F_{an}(q) = -\nabla U_{an}(q) = -k \cdot \frac{q - q_{ziel}}{\|q - q_{ziel}\|}$$

Für kleine Distanzen wird die Kraft sehr groß

Potentialfelder (4)

Quadratische Funktion der Distanz

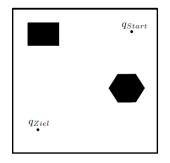
$$U_{an}(\boldsymbol{q}) = k \cdot \frac{1}{2} \|\boldsymbol{q} - \boldsymbol{q}_{ziel}\|^2$$

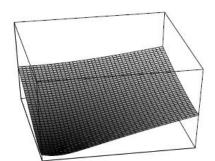
$$F_{an}(\mathbf{q}) = -\nabla U_{an}(\mathbf{q}) = -k \cdot (\mathbf{q} - \mathbf{q}_{ziel})$$

- Oft wird die Kombination aus linearer und quadratischer Funktion verwendet
 - Lineare Funktion, wenn weit vom Ziel entfernt
 - Quadratisch Funktion, wenn nah am Ziel

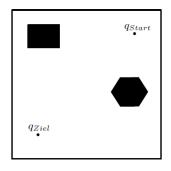
Potentialfelder: Beispiel

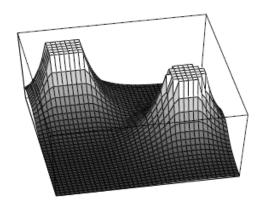
lacktriangle Die **Zielstellung q_{ziel}** hat das anziehende Potential U_{an}





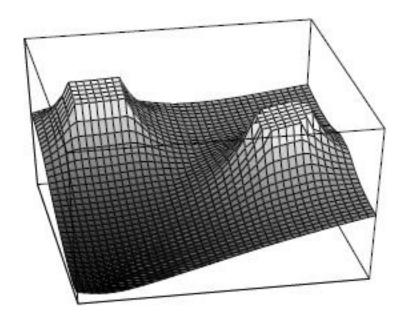
lacktriangle Der **Hindernisraum** C_{obs} hat das abstoßende Potential U_{ab}





Potentialfelder: Beispiel

- Die Summe der einwirkenden Kräfte bestimmt die Richtung der Bewegung.
- Für das Potentialfeld gilt: $U(q) = U_{an}(q) + U_{ab}(q)$
- Für das Kräftefeld gilt: $F(q) = F_{an}(q) + F_{ab}(q)$



Potentialfelder: Lokale Minima

Lokale Minima

Durch Summation von U_{an} und U_{ab} kann U lokale Minima besitzen. Wenn der Roboter sich in Richtung des negativen Gradienten des Potentialfeldes bewegt, kann er in einem solchen lokalen Minimum "steckenbleiben".

Maßnahmen:

- lacksquare und U_{ab} so definieren, dass U kein lokales Minimum hat, außer in $oldsymbol{q}_{ziel}$
- Im Suchalgorithmus Techniken zur "Flucht" aus lokalen Minima anwenden

Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

Grundlagen der Bewegungsplanung: Begriffsbildung

Pfadplanung

- Starres Objekt (z.B. mobiler Roboter, autonomes Fahrzeug)
- \blacksquare 2D Problem (Position: x, y)
- **3** 3D Problem (Position: x, y; Rotation: α)
 - → Piano Mover's Problem

Bewegungsplanung

- Mehrkörpersystem (z.B. Roboterarme, Systeme mit mehreren Robotern)
- Hochdimensionale Problemstellungen

Randbedingungen, auch Zwangsbedingungen

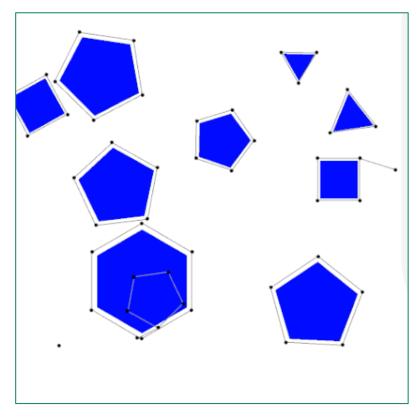
- Globale Randbedingungen: Limitieren den gültigen Konfigurationsraum
 z.B. aufrechte Position des Endeffektors, maximale Motorströme, etc.
- Lokale Randbedingungen: Schränken die Übergänge zwischen Konfigurationen ein z.B.
 Nicht-holonome Fahrzeuge, max. Geschwindigkeit/Beschleunigung

Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

Probabilistic Roadmaps (PRM)

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996), "Probabilistic roadmaps for path planning in high-dimensional configuration spaces", IEEE Transactions on Robotics and Automation, 12 (4): 566–580, doi:10.1109/70.508439



https://en.wikipedia.org/wiki/Probabilistic_roadmap

Probabilistic Roadmaps (PRM)

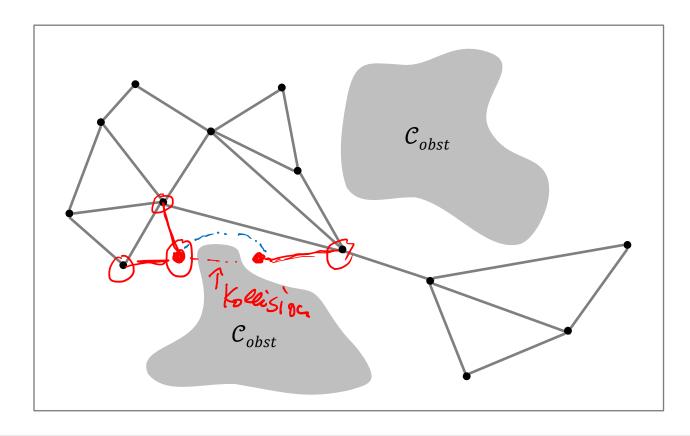
- Mehrere Anfragen (multi-query) in einer gleichbleibenden Umgebung
- Approximation des Freiraumes durch den Graphen (Roadmap)
 - \rightarrow Effizienter als die Erzeugung einer expliziten Repräsentation des Freiraumes (C_{free})

PRM Algorithmus

- Schritt 1: Vorverarbeitung
 - Erzeugung einer kollisionsfreien Graphen durch Wählen zufälliger Punkte (Sampling)
- Schritt 2: Anfrage
 - Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ mit dem Graphen
 - Suche einen Weg von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$ durch den Graphen

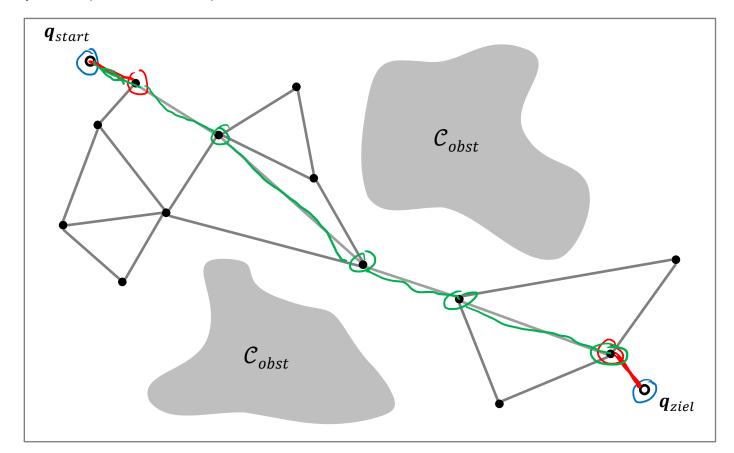
PRM: Vorverarbeitung

- Zufällige Erzeugung von kollisionsfreien Stichproben (Sampling)
- Lokale Planung: Stichproben werden über kollisionsfreie Pfade miteinander verbunden



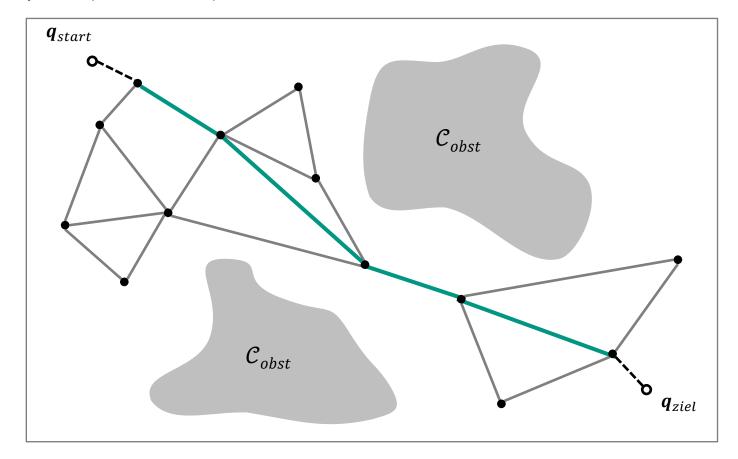
PRM: Anfrage

- lacksquare Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ mit dem Wegenetz
- Suche im Graphen (z.B. mit A*)



PRM: Anfrage

- lacksquare Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ mit dem Wegenetz
- Suche im Graphen (z.B. mit A*)



PRM: Konstruktion des Graphen

- N Anzahl der Knoten im Graphen
- (R): PRM, Graph
- Algorithmus:
 - lacksquare Erzeugen von $oldsymbol{\emptyset}$ zufälligen Konfigurationen in C_{free}
 - Einfügen der erzeugten Konfigurationen als Knoten in R
 - Für jeden Knoten $v_i \in R$
 - Finde die k nächsten Nachbarn von v_i aus $R: \mathcal{N}(v_i)$
 - Für jeden Knoten $v \in \mathcal{N}(v_i)$
 - Wenn es einen (neuen) kollisionsfreien Pfad von v nach v_i gibt, dann füge die Kante (v, v_i) in R ein
 - Ergebnis: R

Lokale Planung

=2

PRM: Eigenschaften

- Einmalige Konstruktion des Graphen
 - Mehrere Anfragen können effizient bearbeitet werden (multi-query)
- Randomisierter Ansatz zur Konstruktion (probabilistisch)
 - Exponentieller Anstieg der Laufzeit mit der Dimension des Konfigurationsraums wird vermieden
- Verfahren hängt stark vom verwendeten Sampling ab
 - Problem: Schmale Passagen zwischen Hindernissen
 - Lösungsansatz: Sampling in der Nähe von Hindernissen erhöhen
- lacktriangle Nicht vollständig, da der Graph C_{free} nur approximiert
 - Ein möglicher Pfad wird nicht unbedingt gefunden
 - Lösungsansatz: Erweitere den Graphen so, dass er zusammenhängend ist und jeder Punkt aus \mathcal{C}_{free} von einem Knoten aus direkt erreichbar ist

PRM: Unterschiedliche Sampling-Strategien

Zufällig:

Konfiguration wird zufällig generiert und auf Kollision geprüft

Grid:

- Konfigurationen werden mit diskreter Auflösung erzeugt
- Auflösung einzelner Zellen wird hierarchisch bestimmt

Halton:

- Halton-Menge: Menge von Punkten, die ein Bereich besser abdeckt als Grid
- Basiert auf dem mathematischen Konzept der Diskrepanz

Zellenbasiert:

- Sampling in Zellen mit kleiner werdenden Ausmaßen
- Zellgröße wird mit jeder Iteration verkleinert (z. B. auf 1/8)

Geraerts, Roland, and Mark H. Overmars. "A comparative study of probabilistic roadmap planners." Algorithmic Foundations of Robotics V. Springer Berlin Heidelberg, 2004. 43-57.

Inhalt

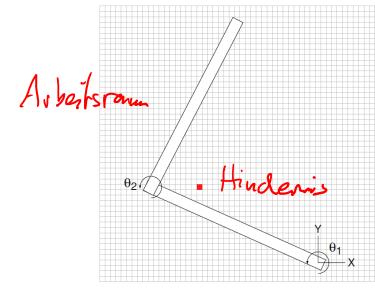
- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

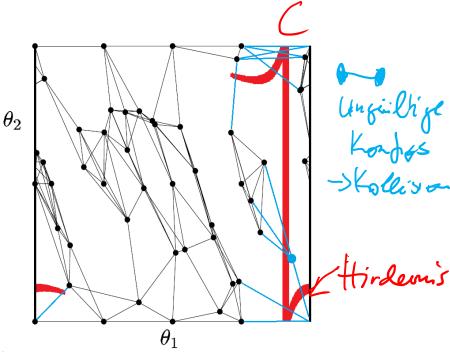
Dynamic Roadmaps (DRM)

- Mehrere Anfragen (multi-query) bei einer gleichbleibenden kinematischen Kette
- Vorverarbeitung
 - Approximation des Konfigurationsraums durch eine Roadmap (Graph)
 - Approximation des Arbeitsraums durch (Voxel (Würfel)
 - Abbildung ϕ_{WC} von Voxel \rightarrow Roadmap (Knoten, Kanten)
- Anfrage
 - Ermittle Voxel mit Hindernis
 - Anpassen der Roadmap
 - Planen in der angepassten Roadmap
- Kann direkt Punktwolken (RGB-D) nutzen

DRM: Vorverarbeitung

- Erzeugung einer selbstkollisionsfreien Roadmap durch Wählen zufälliger Punkte (Sampling)
 - Viele Punkte nötig, um in unterschiedlichen Umgebungen Lösungen zu finden
- Erzeugung der Abbildung φ_{wc} durch Kollisionsüberprüfung zwischen allen Knoten/Kanten und allen Voxeln
 - Sehr rechenaufwändig

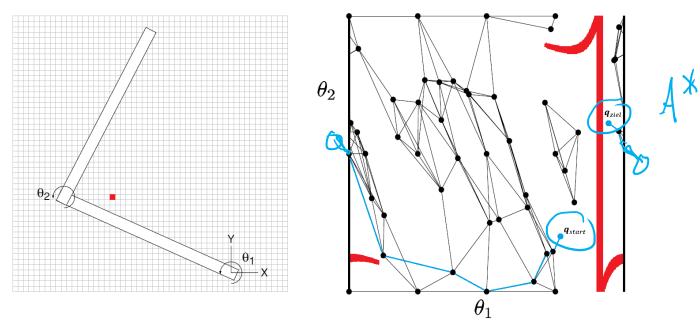




Leven, Peter, and Seth Hutchinson. "A framework for real-time path planning in changing environments." The International Journal of Robotics Research 21.12 (2002): 999-1030.

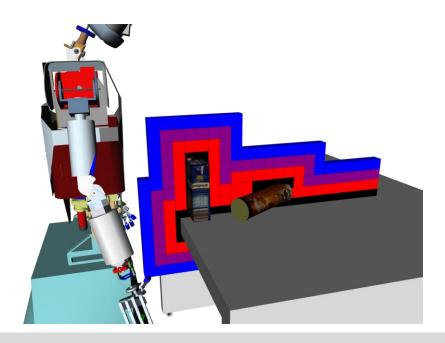
DRM: Anfrage

- Ermittle alle Voxel mit Hindernis
- Lösche alle zugehörigen Kanten und Knoten aus der Roadmap
 - Zugehörigen Kanten und Knoten werden mit φ_{wc} bestimmt
- lacksquare Verbinde $oldsymbol{q}_{start}$ und $oldsymbol{q}_{ziel}$ mit dem Graphen
- lacksquare Suche einen Weg von $oldsymbol{q}_{start}$ nach $oldsymbol{q}_{ziel}$ durch den Graphen



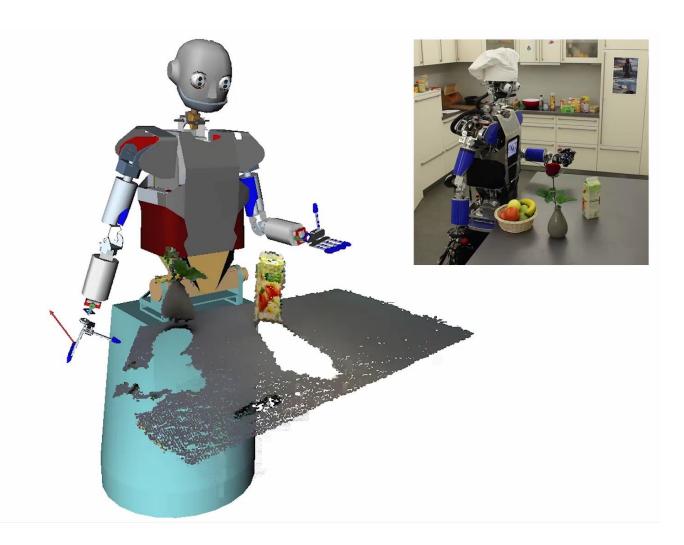
Leven, Peter, and Seth Hutchinson. "A framework for real-time path planning in changing environments." The International Journal of Robotics Research 21.12 (2002): 999-1030.

- DRM sucht den kürzesten Weg -> Bahn oft nahe an Objekten
- Alle Voxel im Sicherheitsabstand löschen
- Für Voxel nahe an Hindernissen Abstand zu Objekten berechnen
- Kanten durch diese Voxel mit höherem Gewicht versehen
 - → Kürzester Pfad in der Roadmap ist im Arbeitsraum weiter von Objekten entfernt



Ausführung auf ARMAR-IIIa

2x



Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

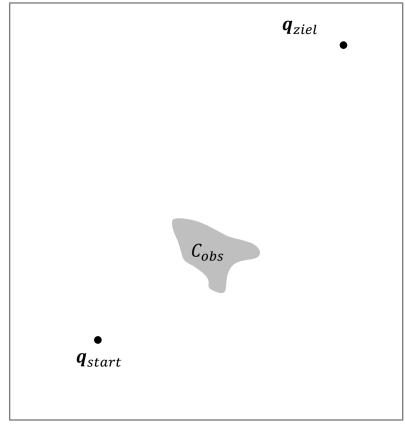
Rapidly-exploring Random Trees (RRTs)

- Im Gegensatz zu PRMs
 - Algorithmus zur Einmalanfrage
 - Keine Vorverarbeitung nötig
 - Keine Probleme mit sich verändernden Umgebungen / kinematischen Ketten
- Probabilistisch vollständiger, randomisierter Algorithmus
 - Keine Garantie, dass eine Lösung innerhalb eines Zeitlimits gefunden wird
 - Wenn eine Lösung existiert, wird sie gefunden (Laufzeit geht gegen Unendlich)
 - Terminiert nicht, wenn keine Lösung existiert
- Effizient für hochdimensionale Problemstellungen
- Erweiterungen der klassischen RRT für spezifische Problemstellungen z.B. enge Durchgänge

RRT: Prinzip I

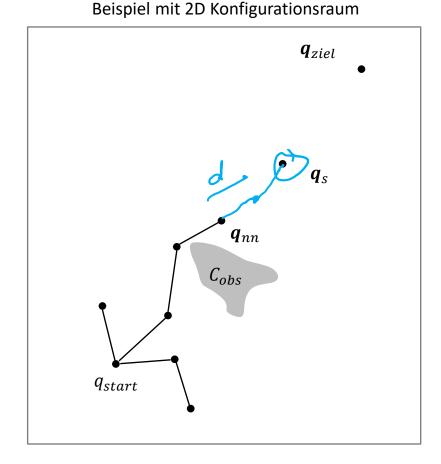
- Die Form von C_{obs} im Konfigurationsraum ist unbekannt
- Initialisierung des RRT
 - Erzeuge leeren Baum T
 - lacksquare Füge $oldsymbol{q}_{start}$ in T ein

Beispiel mit 2D Konfigurationsraum



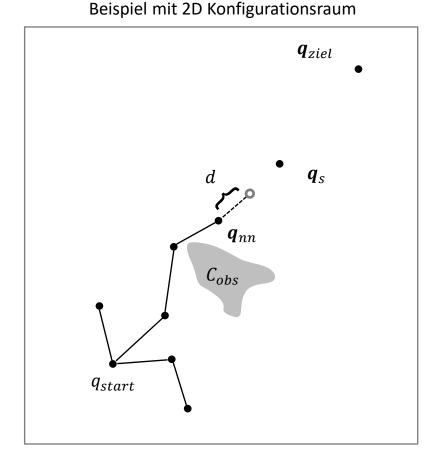
RRT: Prinzip II

- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} .
 - Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



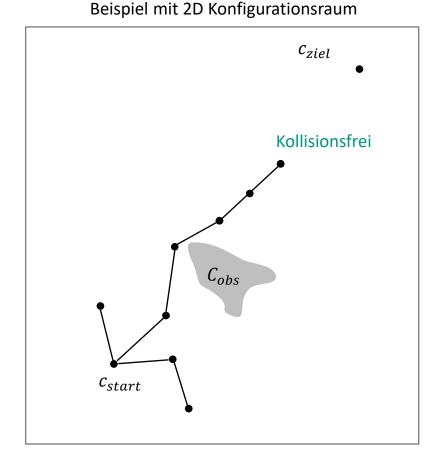
RRT: Prinzip II

- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} .
 - Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



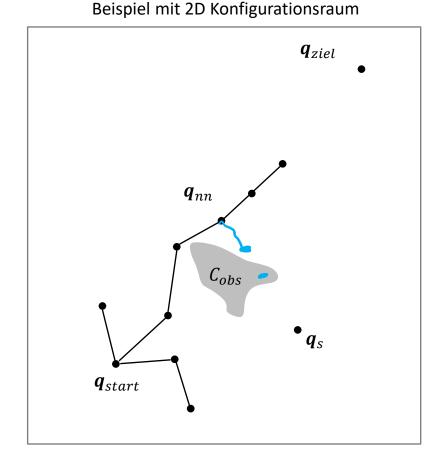
RRT: Prinzip III

- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



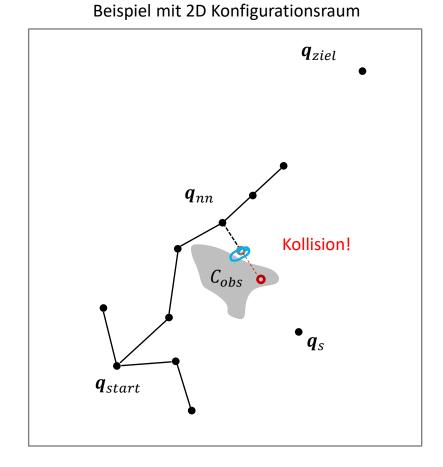
RRT: Prinzip IV

- 1. Erzeuge einen zufälligen Punkt $oldsymbol{q}_{S}$
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



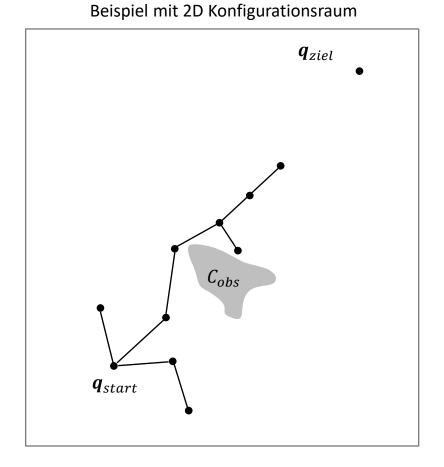
RRT: Prinzip IV

- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



RRT: Prinzip V

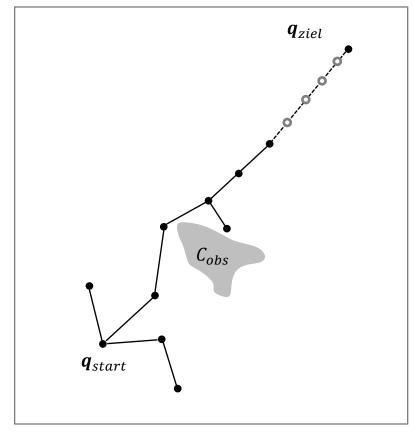
- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.



RRT: Prinzip VI

- Iteration
 - 1. Erzeuge einen zufälligen Punkt q_s
 - 2. Bestimme den nächsten Nachbarn $oldsymbol{q}_{nn}$ in T
 - 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
 - 4. Gehe zu 1.
- Prüfe in jedem k-ten Schritt, ob q_{ziel} mit T verbunden werden kann

Beispiel mit 2D Konfigurationsraum

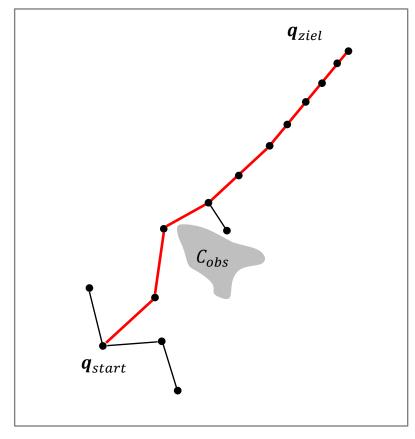


RRT: Prinzip VII

Iteration

- 1. Erzeuge einen zufälligen Punkt q_s
- 2. Bestimme den nächsten Nachbarn q_{nn} in T
- 3. Füge Punkte auf der Verbindung zwischen q_s und q_{nn} in T ein
 - Mit der Schrittweite d
 - Prüfe jeden der Teilpfade auf Kollision mit C_{obs} . Stoppe, wenn eine Kollision erkannt wurde.
- 4. Gehe zu 1.
- Prüfe in jedem k-ten Schritt, ob q_{ziel} mit T verbunden werden kann

Beispiel mit 2D Konfigurationsraum



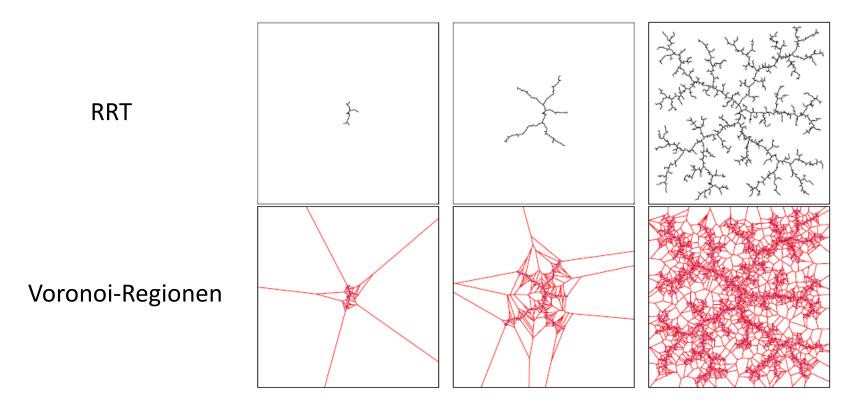
Lösung gefunden

- RRTs sind probabilistisch vollständig
- Intuition: T breitet sich gleichmäßig im Konfigurationsraum aus

https://en.wikipedia.org/wiki/Rapidly-exploring random tree

RRT: Probabilistische Vollständigkeit II

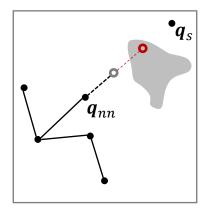
lacktriangle Die Wahrscheinlichkeit, dass ein Knoten von T erweitert wird, ist proportional zur Größe seiner Voronoi-Region



J. J. Kuffner and S. M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings IEEE International Conference on Robotics and Automation. 2000, pp. 995-1001

RRT: Kollisionsprüfung I

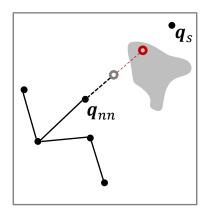
 $lacksymbol{C}_{obs}$ ist nicht bekannt, wie kann geprüft werden, ob $oldsymbol{q}_s$ kollisionsfrei erreicht werden kann?



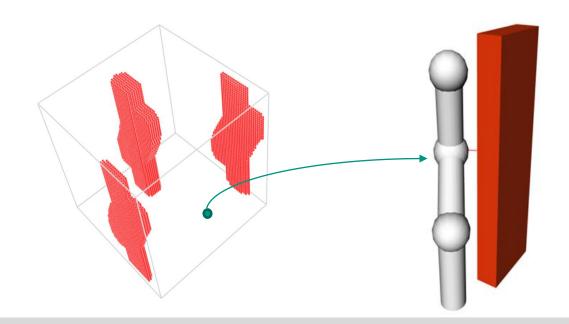
Kollision!

RRT: Kollisionsprüfung II

- lacksquare C_{obs} ist nicht bekannt, wie kann geprüft werden, ob $oldsymbol{q}_s$ kollisionsfrei erreicht werden kann?
- Jeder Punkt $q \in C$ beschreibt eine Konfiguration des Roboters
 - Kollisionsprüfung im Arbeitsraum durchführen

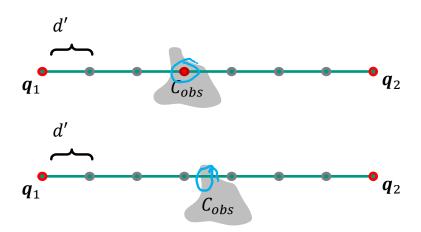


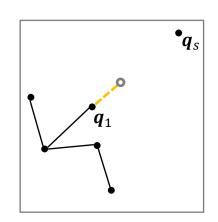
Kollision!

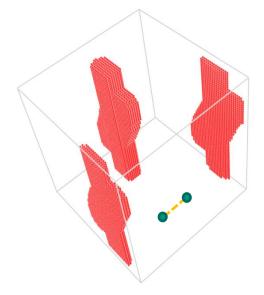


RRT: Kollisionsprüfung III

- Es müssen auch Pfadsegmente auf Kollision geprüft werden
 - Continuous collision detection (CCD)Exakt, aber langsam
 - Sampling-basiertes Verfahren
 - Einzelne Punkte auf dem Pfad werden geprüft
 - Schnell, aber nicht exakt
 - lacktriangle Beinhaltet einen Parameter (Sampling-Distanz d'

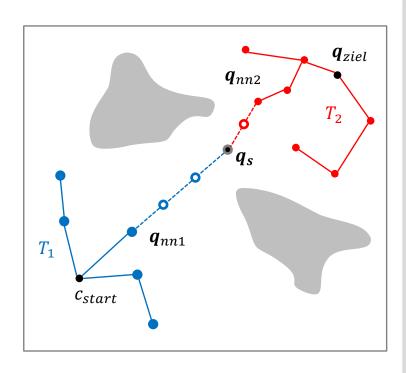






Bidirektionale RRTs

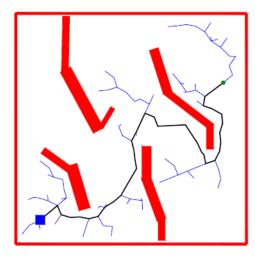
- Es werden zwei Bäume aufgebaut
 - lacksquare T_1 ausgehend von $oldsymbol{q}_{start}$
 - lacksquare T_2 ausgehend von $oldsymbol{q}_{ziel}$
- lacktriangle Zufällig gewählte Punkte $oldsymbol{q}_s$ erweitern beide Bäume über:
 - lacksquare $q_{nn,1}$ (Nächster Nachbar in T_1)
 - $lack q_{nn,2}$ (Nächster Nachbar in T_2)
- Eine Lösung ist gefunden, wenn beide Bäume mit q_s verbunden wurden
- Original-Version (ähnlich): RRT-Connect



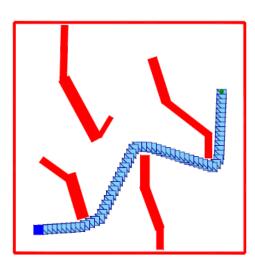
J. J. Kuffner and S. M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proceedings IEEE International Conference on Robotics and Automation. 2000, pp. 995-1001

RRT: Nachbearbeitung

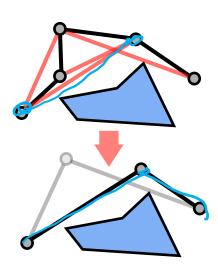
- Lösungen können durch Nachbearbeitung verbessert werden
 - Zufällige Wahl zweier Knoten im Lösungsweg
 - Falls die Verbindung kollisionsfrei ist, verbinde beide Knoten und lösche den dazwischenliegenden Knoten aus dem Lösungspfad
 - Erzeugt glattere Trajektorien



Ursprünglicher Lösungspfad

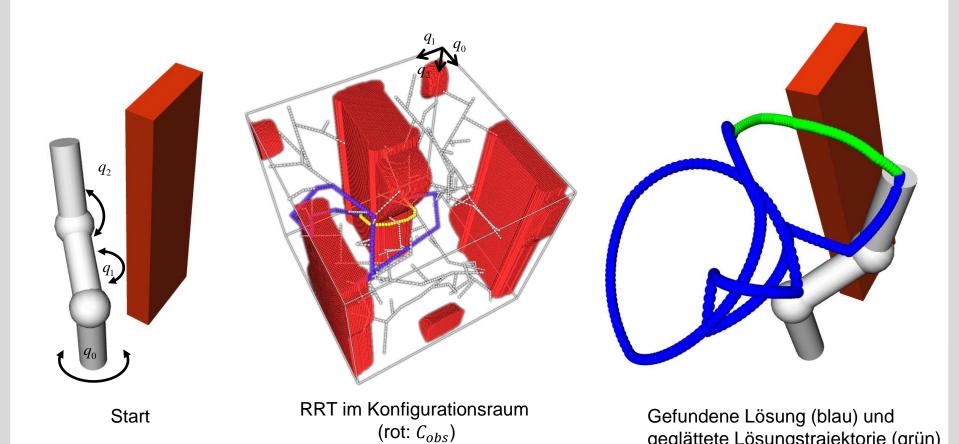


Geglätteter Lösungspfad



RRT: Beispiel

Beispiel mit 3D Konfigurationsraum



geglättete Lösungstrajektorie (grün)

Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

Constrained RRT

- Bei der Bewegungsplanung müssen evtl. Nebenbedingungen (Constraints) erfüllt werden, z.B.:
 - Gleichbleibende Orientierung des Endeffektors
 - (Statische) Stabilität eines zweibeinigen Roboters
- Problem: Nebenbedingungen können niederdimensionale Gebilde im Konfigurationsraum darstellen
 - lacktriangleright z.B. Die Menge aller Konfigurationen $m{q}$, die eine Nebenbedingung erfüllen bilden eine Ebene im dreidimensionalen Konfigurationsraum
 - Sampling-basierte Ansätze können diese Nebenbedingungen prinzipiell nicht erfüllen
- Lösungsansätze:
 - Randomized Gradient Descent (RGD)
 - First Order Retraction (FR)

Constrained RRT

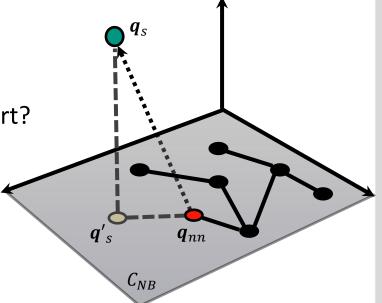
- Idee: Projiziere eine Stichprobe $m{q}_{\scriptscriptstyle S}$ auf eine Konfiguration $m{q'}_{\scriptscriptstyle S}$, die die Nebenbedingung erfüllt
- Beispiel: Eine Nebenbedingung NB bilde eine 2D Mannigfaltigkeit in $C_{NB} \subseteq C$

$$C_{NB} = \{ \boldsymbol{q} \in C : \boldsymbol{q} \text{ erf \"{u}llt NB} \}$$

Problem: Wie wird die Projektion durchgeführt?

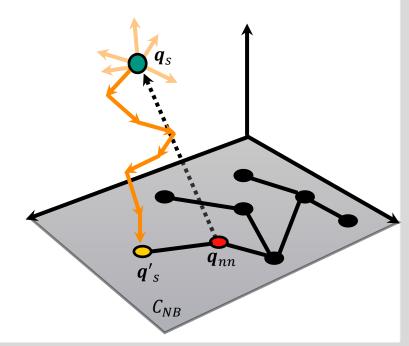
Randomized Gradient Descent

First Order Retraction



Constrained RRT: Randomized Gradient Descent

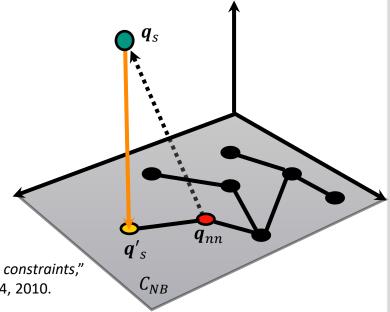
- lacktriang Toleranzwert für Nebenbedingung: lpha
- lacktriangle Zufällige Bestimmung von n Nachbarn von $oldsymbol{q}_s$ (in Hyperkugel mit Radius d_{max})
- Falls die Distanz eines Nachbarn zu C_{NB} kleiner als die Distanz von q_s zu C_{NB} , ersetze q_s mit diesem Nachbarn
- lacktriangle Wiederholen bis maximale Iterationszahl erreicht oder die Distanz von $oldsymbol{q}_s$ zu C_{NB} kleiner ist als lpha
- Distanzmaß zu C_{NB} im Arbeitsraum (!) notwendig
- Keine Richtungsinformation notwendig



Constrained RRT: First Order Retraction

- lacktriangle Toleranzwert für die Nebenbedingung: lpha
- Jacobi-Matrix J liefert Richtungsinformation
- Berechnung wie bei Bestimmung der inversen Kinematik
 - $q_S' = q_S J(q_S)^{\#} \Delta x_S$
 - Δx_s ist der Abstand von q_s zu C_{NB} im Arbeitsraum
- Distanzmaß zu C_{NB} im Arbeitsraum notwendig

M. Stilman, "Global manipulation planning in robot joint space with task constraints," IEEE Transactions on Robotics and Automation , vol. 26, no. 3, pp. 576–584, 2010.



Inhalt

- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

RRT*

- Problem: RRTs finden Trajektorien, die üblicherweise nicht optimal sind
- RRT* optimiert den Suchbaum iterativ während der Suche
 - Mit ausreichender Zeit wird der optimale Pfad zwischen q_{start} und q_{ziel} gefunden \Rightarrow asymptotische Optimalität
- Optimierung des Suchbaums aufgeteilt in zwei Schritte
 - Ermittle zu jedem neuen Knoten die Kosten (z.B. Wegstrecke vom Startknoten)
 - Rewiring des Suchbaums beim Hinzugefügen neuer Knoten

Nachteil:

- Uni-direktionaler Ansatz
- Längere Laufzeiten (bis zu Faktor 30 im Vergleich zu uni-direktionalem RRT)

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. *The International Journal of Robotics Research*, 30(7):846–894, Jan. 2011.

RRT*: Algorithmus

1.
$$q_s = SampleRandom(C)$$

2.
$$\mathbf{q}_{nn} = NearestNeighbor(\mathbf{q}_s, T)$$

3.
$$\boldsymbol{q}_{new} = Steer(\boldsymbol{q}_{nn}, \boldsymbol{q}_{s}, d)$$

4. if ! CollisionFreePath(
$$q_{nn}$$
, q_{new}): goto 1

5.
$$Q_{near} = Near(T, \boldsymbol{q}_{new}, r)$$

6.
$$q_{min} = MinCostPath(Q_{near}, q_{new})$$

7.
$$AddPath(T, \boldsymbol{q}_{min}, \boldsymbol{q}_{new})$$

8.
$$Rewire(T, \boldsymbol{q}_{new}, Q_{near})$$

// Gehe einen Schritt in Richtung
$$q_s$$

// Alle Punkte mit max. Abstand
$$r$$
 zu \boldsymbol{q}_{new}

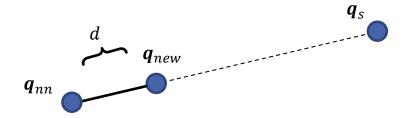
$$// \mathit{Cost}(oldsymbol{q}_{min}) + \mathit{Cost}(oldsymbol{q}_{min}, oldsymbol{q}_{new})$$
 minimal

// Füge Pfad von
$$oldsymbol{q}_{min}$$
 zu $oldsymbol{q}_{new}$ hinzu

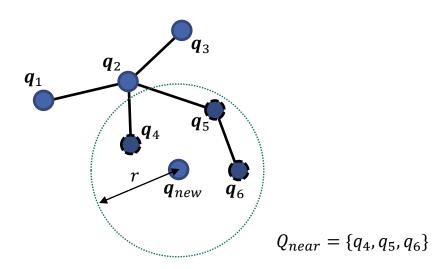
// Überprüfe Kanten zu Knoten in
$$Q_{near}$$

RRT*: Funktionen

- $q_{new} = Steer(q_{nn}, q_s, d)$
 - lacksquare Erzeuge Knoten $oldsymbol{q}_{new}$
 - lacksquare Gehe von $oldsymbol{q}_{nn}$ in Richtung $oldsymbol{q}_{s}$
 - Schrittweite d

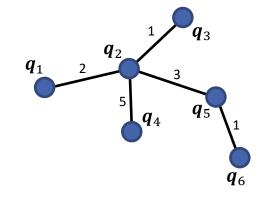


- $Q_{near} = Near(T, q_{new}, r)$
 - Bestimme alle Knoten aus T deren Abstand zu q_{new} maximal r beträgt

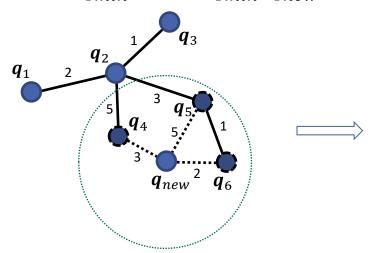


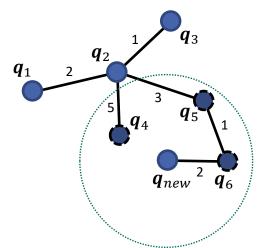
RRT*: Funktionen (II)

- lacksquare $Cost(q_i)$
 - lacksquare Pfadkosten von $oldsymbol{q}_{start}$ zu $oldsymbol{q}_i$
- lacksquare $Cost(oldsymbol{q}_a, oldsymbol{q}_b)$
 - lacksquare Kosten der Verbindung von $oldsymbol{q}_a$ zu $oldsymbol{q}_b$
- $q_{min} = MinCostPath(Q_{near}, q_{new})$
 - Bestimme $q_{min} \in Q_{near}$ so dass Pfadkosten $Cost(q_{min})+Cost(q_{min},q_{new})$ minimal sind (sowie kollisionsfrei)



$$Cost(q_6) = 2 + 3 + 1 = 6$$

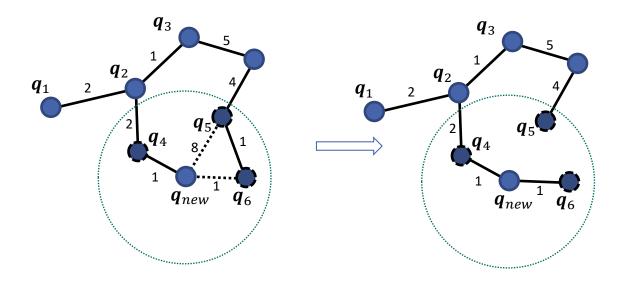




$$q_{min} = q_6$$

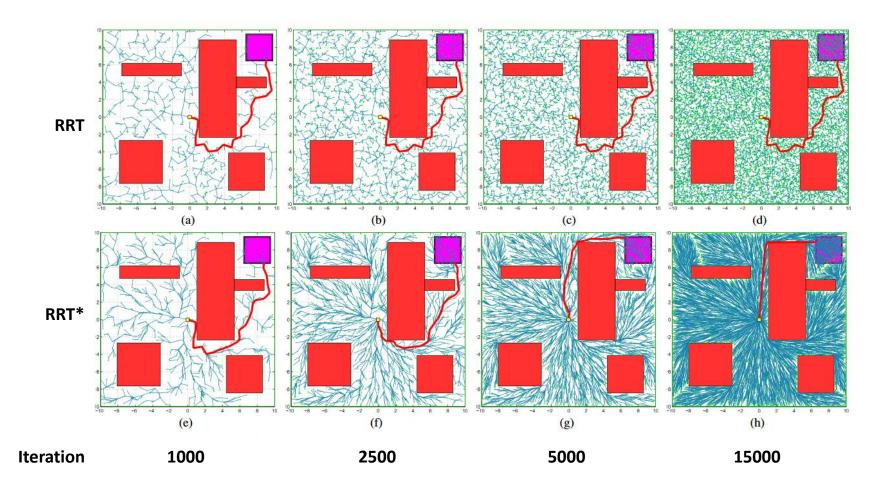
RRT*: Rewiring

- \blacksquare Rewire(T, q_{new} , Q_{near})
 - $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \begin{tabular}{ll}$
 - \blacksquare Ersetze ggf. Verbindung zu q_{near} (falls günstiger und kollisionsfrei)



$$Cost(q_5) = 12$$
 $Cost(q_6) = 13$
 $Cost(q_{new}) = 5$
 $Cost(q_{new}) + Cost(q_{new}, q_5) = 13$
 $Cost(q_{new}) + Cost(q_{new}, q_6) = 6$

Vergleich RRT und RRT*



S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. *The International Journal of Robotics Research*, 30(7):846–894, Jan. 2011.

Vergleich RRT und RRT* (II)

Pfadkosten der gefundenen Lösung (Optimale Lösung: schwarz)

24 22 20 18 16 14 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Number of iterations

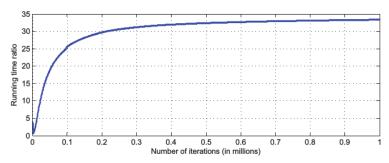
RRT

RRT*

Varianz der Pfadkosten

14 12 10 8 8 4 2 2 2 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Number of iterations

Verhältnis der Laufzeit RRT* / RRT (angegeben für eine Iteration)



S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. *The International Journal of Robotics Research*, 30(7):846–894, Jan. 2011.

Inhalt

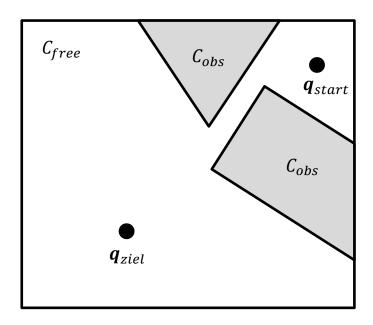
- Motivation
- Grundlagen der Bewegungsplanung
- Pfadplanung für mobile Roboter
- Bewegungsplanung für Manipulatoren
 - Probabilistic Roadmaps (PRM)
 - Dynamic Roadmaps (DRM)
 - Rapidly-exploring Random Trees (RRT)
 - Erweiterungen von RRT
 - Constrained RRT
 - RRT*
 - Enge Passagen
 - Dynamic Domain RRT
 - Bridge Sampling

Enge Passagen: Motivation

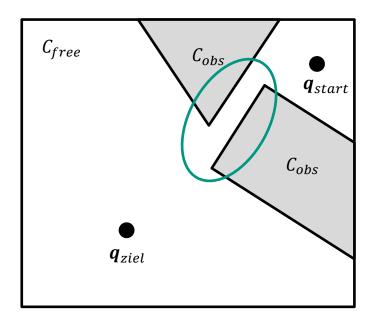
- Nlassiche RRTs bestimmen neue Punkte $m{q}_s$ durch gleichverteilte Zufallswahl im Konfigurationsraum C
- Ergebnis gleichverteilter Zufallswahl:
 - Viele eher uninteressante Stichproben z.B. "mitten in C_{free} ", weit entfernt von Hindernissen
 - Wenige interessante Stichproben
 z.B. nahe bei Hindernissen, insbesondere in engen Passagen zwischen zwei Hindernissen
- Klassische RRTs können viel Zeit benötigen, bis eine Lösung für einen Durchgang durch eine enge Passage gefunden wurde
- Hauptidee der Verfahren: Sampling ist deutlich günstiger als Kollisionsprüfung von Pfaden im Baum

Enge Passagen: Beispiel

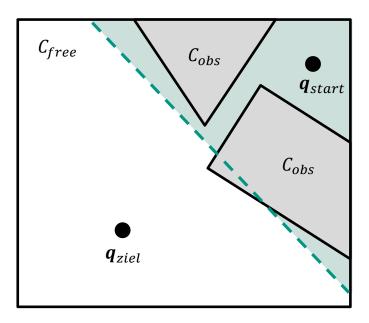
Beispiel für enge Passagen in einem 2D Konfigurationsraum



- Beispiel für enge Passagen in einem 2D Konfigurationsraum
- Geringe Wahrscheinlichkeit, dass neue Stichproben im Bereich der engen Passage liegen

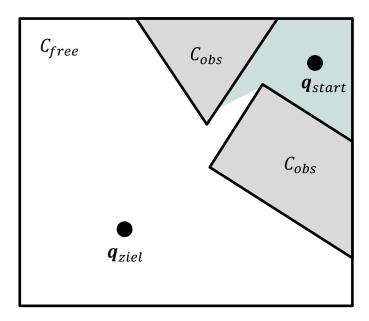


- Problem: RRTs erkennen enge Passagen nicht und können nicht zielgerichtet sampeln
- Ideal: Nur in sichtbarer Voronoi-Region eines Knotens sampeln



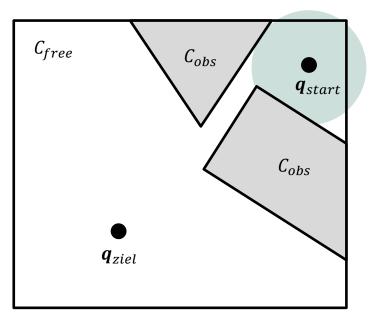
Voronoi-Region zu $oldsymbol{q}_{start}$

- Problem: RRTs erkennen enge Passagen nicht und können nicht zielgerichtet sampeln
- Ideal: Nur in sichtbarer Voronoi Region eines Knotens sampeln



Sichtbare Voronoi-Region zu $oldsymbol{q}_{start}$

- Aber: Berechnung sichtbarer Voronoi-Regionen ist aufwendig (keine explizite Darstellung der Hindernisregionen im Konfigurationsraum)
- **Stattdessen:** Approximation sichtbarer Voronoi-Regionen durch Kugeln mit Radius r (Dynamic Domain)



Approximierte sichtbare Voronoi-Region zu $oldsymbol{q}_{start}$ (Dynamic Domain)

Dynamic Domain RRT (IV)

- Dynamic Domain RRT beschränkt in der Nähe von Hindernissen die Sampling Domäne eines Knotens auf dessen Dynamic Domain (DD).
 - Initial wird der DD-Radius r jedes Knotens auf ∞ gesetzt.
 Sampling findet in gesamter Voronoi Region des Knotens statt.
 - Wenn w\u00e4hrend des RRT-Erweiterungsschritts keine Verbindung zu einem Knoten hergestellt werden kann, wird dessen DD-Radius auf einen festgelegten Wert R reduziert.
 - Knoten dieser Art werden **Grenzknoten** genannt da sie an der Grenze von C_{free} und C_{obs} liegen.

Sampling

Ein Sample q_s wird verworfen, falls q_s außerhalb des DD-Radius seines nächsten Nachbarn liegt $(dist(q_s,q_{nn})>q_{nn},r)$

A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain. In *Proceedings of the 2005 IEEE International Conference on Robotics and Automation*, pages 3856–3861, Apr. 2005.

Dynamic Domain RRT (V)

Bei engen Passagen werden häufige Kollisionsprüfungen vermieden und keine Expansionsversuche zu weit entfernten und unerreichbaren Knoten unternommen.

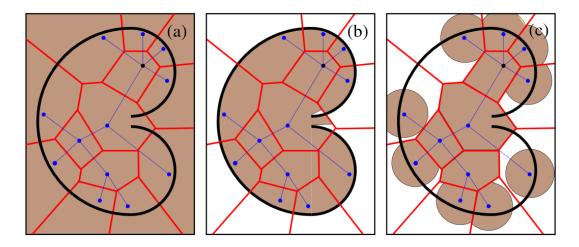
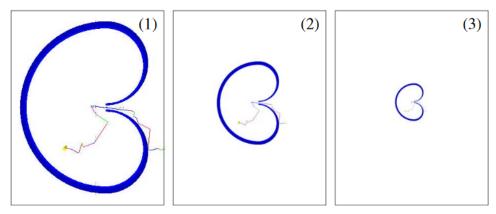


Fig. 3. For a set of points inside a bug trap different sampling domains are shown: (a) regular RRTs sampling domain, (b) visibility Voronoi region, (c) dynamic domain.

A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain. In *Proceedings of the 2005 IEEE International Conference on Robotics and Automation*, pages 3856–3861, Apr. 2005.

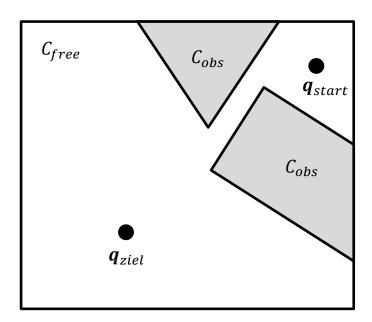
Dynamic Domain RRT – Vergleich zu RRT



	Dynamic-Domain bi-RRT	bi-RRT
time (1)	0.4 sec	0.1 sec
no. nodes (1)	253	37
CD calls (1)	618	54
time (2)	2.5 sec	379 sec
no. nodes (2)	1607	6924
CD calls (2)	3751	781530
time (3)	1.6 sec	> 80000 sec
no. nodes (3)	1301	_
CD calls (3)	3022	_

A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-Domain RRTs: Efficient Exploration by Controlling the Sampling Domain. In *Proceedings of the 2005 IEEE International Conference on Robotics and Automation*, pages 3856–3861, Apr. 2005.

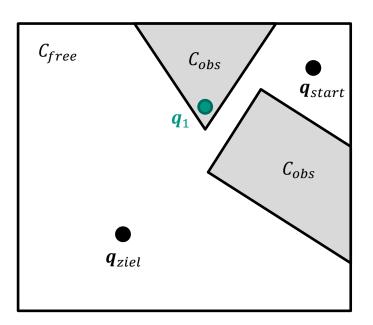
Idee: Wähle zielgerichtet Punkte in engen Passagen für die nächste Stichprobe



Idee: Wähle zielgerichtet Punkte in engen Passagen für die nächste Stichprobe

Vorgehen:

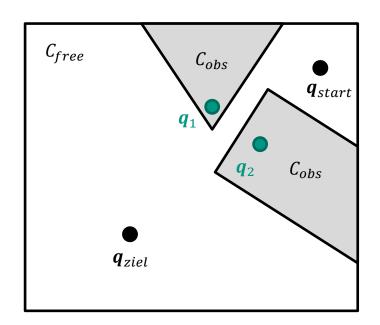
1. Wähle gleichverteilt einen zufälligen Punkt $q_1 \in C_{obs}$



Idee: Wähle zielgerichtet Punkte in engen Passagen für die nächste Stichprobe

Vorgehen:

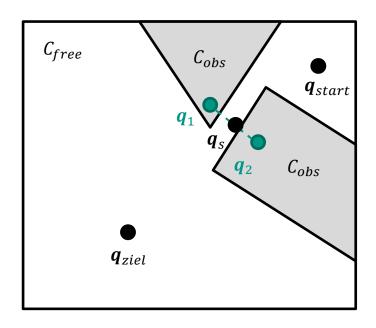
- 1. Wähle gleichverteilt einen zufälligen Punkt $q_1 \in C_{obs}$
- 2. Wähle nach einer geeigneten Wahrscheinlichkeitsverteilung einen zweiten Punkt $q_2 \in \mathcal{C}_{obs}$ in der Nähe von q_1



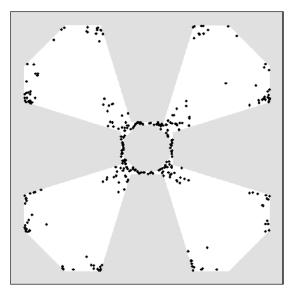
Idee: Wähle zielgerichtet Punkte in engen Passagen für die nächste Stichprobe

Vorgehen:

- 1. Wähle gleichverteilt einen zufälligen Punkt $q_1 \in C_{obs}$
- 2. Wähle nach einer geeigneten Wahrscheinlichkeitsverteilung einen zweiten Punkt $q_2 \in C_{obs}$ in der Nähe von q_1
- 3. Wenn der Mittelpunkt q_s zwischen q_1 und q_2 in C_{free} liegt, dann verwende ihn als neue Stichprobe für den RRT (oder die PRM)
- 4. Wiederhole



- Bridge Sampling erhöht die Stichprobendichte in interessanten Bereichen des Konfigurationsraumes C
 - Interessant sind Bereiche in der Nähe von Hindernissen, besonders in engen Passagen
- Bridge Sampling kann für RRTs und PRMs verwendet werden
- Das zentrale Element des Verfahrens, der Bridge Test, ist auch in hochdimensionalen Räumen effizient berechenbar



Stichproben beim Bridge Sampling (Sun et al., 2005)

Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. Reif, "Narrow passage sampling for probabilistic roadmap planning," IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1105–1115, 2005

Englische Begriffe

Deutsch	Englisch
Bewegungsplanung	Motion planning
Freiraum	Free space
Hindernis	Obstacle
Konfiguration	Configuration
Konfigurationsraum	Configuration space
Pfadplanung	Path planning
Potentialfeld	Potential field
Sichtgraph	View graph
Trajektorie	Trajectory
Zellzerlegung	Cell decomposition
Zwangsbedingung	Constraint
Neben- und Randbedingung	Constraint

Englische Begriffe

Deutsch	Englisch
Bestensuche	Best-first search
Enge Passagen	Narrow passages
Kern	Kernel
Nebenbedingung	Constraint
Projektion	Projection
Stichprobe	Sampling
Vorgängerknoten	Predecessor
Zulässig	Admissible

